BZOJ 2007: [Noi2010]海拔
2007: [Noi2010]海拔
Time Limit: 20 Sec Memory Limit: 552 MB
Submit: 2410 Solved: 1142
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1
2
3
4
5
6
7
8
Sample Output
【样例说明】
样例数据见下图。
最理想情况下所有点的海拔如上图所示。
对于100%的数据:1 ≤ n ≤ 500,0 ≤ 流量 ≤ 1,000,000且所有流量均为整数。
HINT
Source
网络流 平面图最小割转对偶图最短路
有个性质,就是一定存在一组最优解,是一些点海拔为0,其余点海拔为1,且两类点各形成一个连通块,即产生代价的边为S到T的一个割边集合,代价即为流量和。
为了防止TLE,最好转对偶图做最短路,注意因为原本是有向边,所以转对偶图时也是有固定规则的有向边。

#include <queue>
#include <cstdio> inline int nextChar(void) {
static const int siz = ;
static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz;
if (hd == tl)
fread(hd = buf, , siz, stdin);
return *hd++;
} inline int nextInt(void) {
register int ret = ;
register int neg = false;
register int bit = nextChar();
for (; bit < ; bit = nextChar())
if (bit == '-')neg ^= true;
for (; bit > ; bit = nextChar())
ret = ret * + bit - ;
return neg ? -ret : ret;
} const int inf = 1e9;
const int siz = ; int n;
int s, t;
int edges;
int hd[siz];
int to[siz];
int nt[siz];
int vl[siz];
int dis[siz]; inline void add(int u, int v, int w) {
nt[edges] = hd[u];
to[edges] = v;
vl[edges] = w;
hd[u] = edges++;
} struct pair {
int x, y;
pair(void) {};
pair(int a, int b) :
x(a), y(b) {};
inline friend bool operator <
(const pair &a, const pair &b) {
return a.x > b.x;
}
}; std::priority_queue<pair> h; inline int Dijkstra(void) {
h.push(pair(dis[s] = , s));
while (!h.empty()) {
pair p = h.top(); h.pop();
if (dis[p.y] != p.x)continue;
if (p.y == t)return dis[p.y];
for (int i = hd[p.y]; ~i; i = nt[i])
if (dis[to[i]] > dis[p.y] + vl[i])
h.push(pair(dis[to[i]] = dis[p.y] + vl[i], to[i]));
}
return dis[t];
} inline int pos(int x, int y) {
if (x == || y == n + )return s;
if (y == || x == n + )return t;
return (x - ) * n + y;
} signed main(void) {
n = nextInt();
s = , t = n * n + ;
for (int i = s; i <= t; ++i)hd[i] = -;
for (int i = s; i <= t; ++i)dis[i] = inf;
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
add(pos(i, j), pos(i + , j), nextInt());
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
add(pos(i, j + ), pos(i, j), nextInt());
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
add(pos(i + , j), pos(i, j), nextInt());
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
add(pos(i, j), pos(i, j + ), nextInt());
printf("%d\n", Dijkstra());
}
@Author: YouSiki
BZOJ 2007: [Noi2010]海拔的更多相关文章
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)
题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...
- bzoj 2007 [Noi2010]海拔——最小割转最短路
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...
- bzoj 2007: [Noi2010]海拔【最小割+dijskstra】
上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...
- 【BZOJ 2007】 2007: [Noi2010]海拔 (平面图转对偶图+spfa)
2007: [Noi2010]海拔 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2504 Solved: 1195 Description YT市 ...
- 2007: [Noi2010]海拔
2007: [Noi2010]海拔 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 分析: 平面图最小割. S在左下,T在右上,从S到T的一 ...
- 2007: [Noi2010]海拔 - BZOJ
Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)× ...
- 【BZOJ】2007: [Noi2010]海拔(平面图转对偶图)
题目 传送门:QWQ 分析 左上角是0,右下角是1.那么大概整张图是由0 1构成的. 那么我们要找到0和1的分界线,值就是最小割. 然后变成求原图最小割. 考虑到此题是平面图,那么就转成对偶图跑最短路 ...
- BZOJ 2007 NOI2010 海拔高度 最小减产计划
标题效果:YT城市是一个精心规划的城市.这个城市是东西向和南北向干道成n×n地区性.简单.可以YT作为一个城市广场,每个区域也可被视为一个正方形.因此,.YT市中含有(n+1)×(n+1)交叉口和2n ...
随机推荐
- Java微信公众平台接口封装源码分享
前言: 这篇博客是在三月初动手项目的时候准备写的,但是为了完成项目只好拖延时间写这篇博客,顺便也可以在项目中应用我自己总结的的一些经验.今天看来,这些方法的应用还是可以的,至少实现了我之前的 ...
- 《连载 | 物联网框架ServerSuperIO教程》- 14.配制工具介绍,以及设备驱动、视图驱动、服务实例的挂载
注:ServerSuperIO二次开发套件授权码申请---截止到:2016-12-09 1.C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍 <连载 | 物联网框架Server ...
- Python开发【第二篇】:Python基础知识
Python基础知识 一.初识基本数据类型 类型: int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位 ...
- 商业智能BI推动制造业智能化转型
制造业是我国国民经济的支柱产业,是我国经济增长的主导部门和经济转型的基础,如今我国制造业面临技术工艺不精.缺乏市场意识.商贸流通环节多.物流成本大.仓储效率低下等问题,正处在转型的特殊时期. 内忧: ...
- 用block做事件回调来简化代码,提高开发效率
我们在自定义view的时候,通常要考虑view的封装复用,所以如何把view的事件回调给Controller就是个需要好好考虑的问题, 一般来说,可选的方式主要有target-action和de ...
- Express 4 handlebars 不使用layout写法
Express 4 handlebars 不使用layout写法 Express node nodejs handlebars layout 最近刚开始学习使用nodejs. 使用express搭建了 ...
- 错误 1 类型“System.Web.Mvc.ModelClientValidationRule”同时存在于“c:\Progra
问题如图: 解决办法: step1: 首先关闭你应用程序方案,在你保存项目的文件夹下找到ProjectName.csproj ProjectName是你实际的应用程序名称. step2: 用文字编辑 ...
- Oracle常用命令大全(很有用,做笔记)
一.ORACLE的启动和关闭 1.在单机环境下 要想启动或关闭ORACLE系统必须首先切换到ORACLE用户,如下 su - oracle a.启动ORACLE系统 oracle>svrmgrl ...
- HttpsURLConnection 利用keepAlive特性进行优化一例
最近项目中,遇到一个报错: java.lang.OutOfMemoryError: unable to create new native thread 报错的场景是:一个消息的群发,群里总共有50多 ...
- JSON-RPC 2.0 规范中文文档
链接地址如下 http://wiki.geekdream.com/Specification/json-rpc_2.0.html