题目描述 Description

已知整数x,y满足如下面的条件:

ax+by+c = 0

p<=x<=q

r<=y<=s

求满足这些条件的x,y的个数。

输入描述 Input Description

第一行有一个整数nn<=10),表示有n个任务。n<=10

以下有n行,每行有7个整数,分别为:a,b,c,p,q,r,s。均不超过108。

输出描述 Output Description

n行,第i行是第i个任务的解的个数。

样例输入 Sample Input

2

2 3 -7 0 10 0 10

1 1 1 -10 10 -9 9

样例输出 Sample Output

1

19

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll x,y,a,b,c,g,p,q,r,s;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b == ){
x = ;
y = ;
return a;
}
ll ans = exgcd(b,a%b,x,y);
ll t = x;
x = y;
y = t - (a/b) * y;
return ans;
}
ll gcd(ll a,ll b){
return b == ? a : gcd(b,a%b);
}
int main(){
int n;
cin>>n;
for(int i = ;i <= n;i++){
cin>>a>>b>>c>>p>>q>>r>>s;
c = -c;
if(a == && b == && c!= ){
cout<<<<endl;
continue;
}
if(q < p || s < r){
cout<<<<endl;
continue;
}
if(a == && b== && c==){
cout<<(q-p+)*(s-r+)<<endl;
continue;
}
g = exgcd(a,b,x,y);
x *= c/g;
y *= c/g;
if(x*a + y*b != c){
cout<<<<endl;
continue;
}
ll plusx = b / g,plusy = a / g,dx,dy;
ll acc = ;
bool fu;
if(plusx < ) fu = true;
else fu = false;
while(x < p){
if(plusx == ) break;
if(!fu) x+=plusx,y-=plusy;
else x-=plusx,y+=plusy;
}
while(x > q){
if(plusx == ) break;
if(!fu) x-= plusx,y+=plusy;
else x+=plusx,y-=plusy;
}
if(x >= p && x <= q && y >= r && y <= s)acc++;
dx = x;
dy = y;
while(dx >= p){
if(plusx == ) break;
if(!fu){
dx -= plusx;
dy += plusy;
}else{
dx += plusx;
dy -= plusy;
}
if(dx >= p && dx <= q && dy >= r && dy <= s) acc++;
}
dx = x;
dy = y;
while(dx <= q){
if(plusx == ) break;
if(!fu){
dx += plusx;
dy -= plusy;
}else{
dx -= plusx;
dy += plusy;
}
if(dx >= p && dx <= q && dy >= r && dy <= s) acc++;
}
cout<<acc<<endl;
}
return ;
}

codevs1213 解的个数的更多相关文章

  1. 解的个数(codevs 1213)

    题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = 0 p<=x<=q r<=y<=s 求满足这些条件的x,y的个数. 输入描述 Input ...

  2. 扩展gcd codevs 1213 解的个数

    codevs 1213 解的个数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by ...

  3. n元线性方程非负整数解的个数问题

    设方程x1+x2+x3+...+xn = m(m是常数) 这个方程的非负整数解的个数有(m+n-1)!/((n-1)!m!),也就是C(n+m-1,m). 具体解释就是m个1和n-1个0做重集的全排列 ...

  4. codevs 1213 解的个数

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold       题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c = ...

  5. Codevs 1213 解的个数(exgcd)

    1213 解的个数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 已知整数x,y满足如下面的条件: ax+by+c=0 p< ...

  6. P1098 方程解的个数

    题目描述 给出一个正整数N,请你求出x+y+z=N这个方程的正整数解的组数(1<=x<=y<=z<1000).其中,1<=x<=y<=z<=N . 输入 ...

  7. HDU1573 线性同余方程(解的个数)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. 计蒜客 18487.Divisions-大数的所有因子个数-Miller_Rabin+Pollard_rho-超快的(大数质因解+因子个数求解公式) (German Collegiate Programming Contest 2015 ACM-ICPC Asia Training League 暑假第一阶段第三场 F)

    这一场两个和大数有关的题目,都用到了米勒拉宾算法,有点东西,备忘一下. 题目传送门 F. Divisions 传送门 这个题是求一个数的所有因子个数,但是数据比较大,1e18,所以是大数的题目,正常的 ...

  9. hdu4282 x^z+y^z+x*y*z=k 解的个数

    题意:      x^z + y^z + x*y*z = k; (x < y ,z > 1),给你一个k问有多少组解. 思路:        暴力枚举z,y,然后二分查找x.注意一点最好用 ...

随机推荐

  1. 源码阅读之LinkedList(JDK8)

    inkedList概述 LinkedList是List和Deque接口的双向链表的实现.实现了所有可选列表操作,并允许包括null值. LinkedList既然是通过双向链表去实现的,那么它可以被当作 ...

  2. C基础-对malloc的使用与理解

    一.malloc函数分析 1.函数原型 void * malloc(size_t  size); 2.Function(功能) Allocates a block of size bytes of m ...

  3. Elasticsearch--建议器

    目录 可用的建议器类型 term建议器 term建议器的配置选项 phrase建议器 completion建议器 在考虑性能的情况下,允许用户的拼写错误,以及构建一个自动完成功能 可用的建议器类型 t ...

  4. BPI-MI1刷Andorid的启动卡之后上网的步骤(以太网&&WIFI)

    BPI-MI1刷Andorid的启动卡之后上网的步骤(以太网&&WIFI) 2017/9/19 16:57 01刷Android的默认启动界面.png 02打开英文模式下的设置Sett ...

  5. 一次“MySQL server has gone away”故障及其解决

    1,问题现象 某次测试发现,程序失去响应.由于程序集成了EurekaLog组件,弹出了错误框.查看其给出的Call Stack信息,发现没有发生线程死锁(DeadLock=0;),问题在于 Wait ...

  6. 【译】x86程序员手册24-第7章 多任务

    Chapter 7 Multitasking 多任务 To provide efficient, protected multitasking, the 80386 employs several s ...

  7. java_IO_3

    Reader和Writer针对字符文件  对图片类文件可能就显得无能为力了  会损坏文件 package ioStudy; import java.io.File; import java.io.Fi ...

  8. adb 命令收藏学习地址

    adb 命令相关的网页https://www.cnblogs.com/medsonk/p/8334847.htmlhttps://www.cnblogs.com/medsonk/p/6959658.h ...

  9. top命令的用法

    top命令的用法 2018年07月15日 09:50:04 zhuoya_ 阅读数:1858    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/z ...

  10. scala学习(1)----map和flatMap的区别

    转载:https://www.cnblogs.com/wbh1000/p/9846401.html 两者的区别主要在于action后得到的值 例子: import org.apache.spark.{ ...