P1082 同余方程(拓展欧几里德)
题目描述
求关于xx的同余方程 a x \equiv 1 \pmod {b}ax≡1(modb) 的最小正整数解。
输入输出格式
输入格式:
一行,包含两个正整数 a,ba,b,用一个空格隔开。
输出格式:
一个正整数 x_0x0,即最小正整数解。输入数据保证一定有解。
输入输出样例
说明
【数据范围】
对于 40%的数据,2 ≤b≤ 1,0002≤b≤1,000;
对于 60%的数据,2 ≤b≤ 50,000,0002≤b≤50,000,000;
对于 100%的数据,2 ≤a, b≤ 2,000,000,0002≤a,b≤2,000,000,000。
NOIP 2012 提高组 第二天 第一题
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath> const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return a;
}
ll ans=exgcd(b,a%b,x,y);
ll temp=x;
x=y;
y=temp-(a/b)*y;
return ans;
}
int main()
{
ll a,b;
ll x=,y=;
cin>>a>>b;
ll ans=exgcd(a,b,x,y);
cout<<(x%b+b)%b<<endl; return ;
}
P1082 同余方程(拓展欧几里德)的更多相关文章
- 【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题
模板,,, #include<cstdio> using namespace std; void exgcd(long long a,long long b,long long & ...
- 【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)
题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余 ...
- 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...
- 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)
题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...
- 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)
题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...
- 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C) statement; 问循环的次数,若"永不停息&q ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- 【BZOJ-1965】SHUFFLE 洗牌 快速幂 + 拓展欧几里德
1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 541 Solved: 326[Submit][St ...
- hdu 2769 uva 12169 Disgruntled Judge 拓展欧几里德
//数据是有多水 连 10^10的枚举都能过 关于拓展欧几里德:大概就是x1=y2,y1=x2-[a/b]y2,按这个规律递归到gcd(a,0)的形式,此时公因数为a,方程也变为a*x+0*y=gcd ...
- UVa 12169 - Disgruntled Judge(拓展欧几里德)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- ios数组基本用法和排序大全
1.创建数组 // 创建一个空的数组 NSArray *array = [NSArray array]; // 创建有1个元素的数组 array = [NSArray arrayWithObject: ...
- MySQL数据库高可用方案
一.什么是高可用性: 高可用性=可靠性,它的本质就是通过技术和工具提高可靠性,尽可能长时间保持数据可用和系统运行,实现高可用性的原则,首先要消除单点故障,其次通过冗余机制实现快速恢复,还有就是实现容错 ...
- C语言学习笔记之数组与指针的关系
首先,大家先需知道一个关于基类型的概念 基类型:组成一个新类型的基础类型 这句话是什么意思呢?举个例子: int a[3] = {1,2,3}; 上面是由三个int类型的数组成一个新的类型也就是数组, ...
- 读源码从简单的集合类之ArrayList源码分析。正确认识ArrayList
一.查看源码的方法 1.看继承结构 看这个类的层次结构,处于一个什么位置,可以在自己心里有个大概的了解. 我是有idea查看的, eg:第一步: 第二步: 第三步:查看子类或者继承关系:F4 2.看构 ...
- C#设计模式之17-中介者模式
中介者模式(Mediator Pattern) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/419 访问. 中介者模式 ...
- C#LeetCode刷题之#746-使用最小花费爬楼梯( Min Cost Climbing Stairs)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4016 访问. 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个 ...
- Ansible常用模块-yum模块
yum模块 name 必选 指定安装包名 state 执行命令 present installed removed latest absent 其中installed and present等效 ...
- next()与nextLine()的区别
abc def ghij kl mno pqr st uvw xyz 你用next(),第一次取的是abc,第二次取的是def,第三次取的是ghij 你用nextLine(),第一次取的是abc de ...
- 关于python中Enum的个人总结
关于python中Enum的个人总结 初识 可以通过enum模块导入 语法 初始化: 可以通过enum_ = Enum('class_name', names,start = 1)来创建,其中name ...
- 用python进行实际地址经纬度提取
实际地址经纬度提取 请求接口: https://apis.map.qq.com/ws/place/v1/suggestion/ 所需参数: 参数名称 是否必须 参数类型 说明 keyword 是 St ...