LINK:Eden 的新背包问题

就是一个多重背包 每次去掉一个物品 询问钱数为w所能买到的最大值。

可以对于每次Q暴力dp 利用单调队列优化多重背包 这样复杂度是Qnm的。

发现过不了n==10的点。

仔细观察n==10的点 可以发现我们暴力枚举 某个物品不选之后的最大值即可。设状态f[i][j]表示第i个物品不选此时钱数为j的最大值。

求出这个复杂度是n^2m的 然后可以O(1)回答询问。

考虑正解 可以发现 对于01背包或者多重背包 去掉一个物品询问最大价值 动态直接去掉是不现实的。

考虑分治 分治到某个点上表示其他的都加入背包了 就当前点没有加入背包的最大值。

然后 对于分治的两边 暴力合并。可以发现这个合并是m^2的。

进一步的 可以发现 分治的复杂度极高 不如直接求出前后缀的背包和 然后进行合并。

怎么把合并的复杂度降下来是问题 类似于卷积不过这个是取max.

考虑每次询问 只询问w 而不是询问整个m 所以直接合并的复杂度为O(m).

复杂度为Qm。3e8 但是跑的飞快。

const int MAXN=1010;
int n,Q,m;
int f[MAXN][MAXN],g[MAXN][MAXN];
int q[MAXN],l,r;
struct wy{int w,c,v;}t[MAXN];
int main()
{
freopen("1.in","r",stdin);
get(n);m=1000;
rep(1,n,i)
{
int get(x),get(y),get(z);
t[i]=(wy){x,z,y};
}
rep(1,n,i)//前i个物品
{
for(int res=0;res<w(i);++res)
{
int ww=(m-res)/w(i);
l=r=1;q[1]=0;
f[i][res]=f[i-1][res];
rep(1,ww,j)
{
while(l<=r&&j-q[l]>c(i))++l;
int s=j*w(i)+res;
f[i][s]=max(f[i-1][s],f[i-1][q[l]*w(i)+res]+(j-q[l])*v(i));
while(l<=r&&f[i-1][s]>=f[i-1][q[r]*w(i)+res]+(j-q[r])*v(i))--r;
q[++r]=j;
}
}
}
fep(n,1,i)
{
for(int res=0;res<w(i);++res)
{
int ww=(m-res)/w(i);
l=r=1;q[1]=0;g[i][res]=g[i+1][res];
rep(1,ww,j)
{
while(l<=r&&j-q[l]>c(i))++l;
int s=j*w(i)+res;
g[i][s]=max(g[i+1][s],g[i+1][q[l]*w(i)+res]+(j-q[l])*v(i));
while(l<=r&&g[i+1][s]>=g[i+1][q[r]*w(i)+res]+(j-q[r])*v(i))--r;
q[++r]=j;
}
}
}
get(Q);
rep(1,Q,i)
{
int x,w;
get(x)+1;get(w);
int ans=0;
rep(0,w,j)ans=max(ans,f[x-1][j]+g[x+1][w-j]);
put(ans);
}
return 0;
}

luogu P4095 [HEOI2013]Eden 的新背包问题 多重背包 背包的合并的更多相关文章

  1. LUOGU P4095 [HEOI2013]Eden 的新背包问题

    题目描述 " 寄 没 有 地 址 的 信 ,这 样 的 情 绪 有 种 距 离 ,你 放 着 谁 的 歌 曲 ,是 怎 样 的 心 情 . 能 不 能 说 给 我 听 ." 失忆的 ...

  2. Luogu P4095 [HEOI2013]Eden的新背包问题

    题目 求出从前往后的背包\(f_{i,j}\)和从后往前的背包\(F_{i,j}\). 那么对于询问\((d,e)\),答案就是\(\max\limits_{i=0}^e f_{d-1,i}+F_{d ...

  3. Luogu P4095 [HEOI2013]Eden 的新背包问题 思维/动规

    当时一直在想前缀和...多亏张队提醒... 从1到n背次包,保存每一个状态下的价值,就是不要把第一维压掉:再从n到1背一次,同样记住每种状态: 然后询问时相当于是max(前缀+后缀),当然前缀后缀中间 ...

  4. P4095 [HEOI2013]Eden 的新背包问题

    P4095 [HEOI2013]Eden 的新背包问题 题解 既然假定第 i 个物品不可以选,那么我们就设置两个数组 dpl[][] 正序选前i个物品,dpr[][] 倒序选前i个物品 ,价格不超过 ...

  5. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

  6. BZOJ 3163: [Heoi2013]Eden的新背包问题( 背包dp )

    从左到右, 从右到左分别dp一次, 然后就可以回答询问了. ---------------------------------------------------------- #include< ...

  7. BZOJ3163&Codevs1886: [Heoi2013]Eden的新背包问题[分治优化dp]

    3163: [Heoi2013]Eden的新背包问题 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 428  Solved: 277[Submit][ ...

  8. 洛谷P4095||bzoj3163 [HEOI2013]Eden 的新背包问题

    https://www.luogu.org/problemnew/show/P4095 不太会.. 网上有神奇的做法: 第一种其实是暴力(复杂度3e8...)然而可以A.考虑多重背包,发现没有办法快速 ...

  9. bzoj 3163: [Heoi2013]Eden的新背包问题

    Description "寄没有地址的信,这样的情绪有种距离,你放着谁的歌曲,是怎样的心心静,能不能说给我听."失忆的Eden总想努力地回忆起过去,然而总是只能清晰地记得那种思念的 ...

随机推荐

  1. 使用现代CSS的响应式版面

    为一个网站选择类型尺寸是项艰巨的任务. 标题和段落的尺寸在网页布局和可读性方面处理起来很棘手. 谢天谢地, 我们有模块化缩放可以引导我们. 模块化缩放是一个数字序列以某种方式关联另一个序列. Tim ...

  2. swiper的自适应高度问题

    #swiper的自适应高度问题 ​ 众所周知,swiper组件的元素swiper-item是设置了绝对定位的,所以里面的内容是无法撑开swiper的,并且给swiper盒子设置overflow:vis ...

  3. rabbitmq部署及配置与验证

    1. 场景描述 朋友项目需要弄个测试环境,稍微帮忙了下,系统不复杂,但是需要自己安装mysql.Reids.Es.RabbitMq等,Mq主要用在同步用户信息与发送站内消息和短信上,RabbitMq以 ...

  4. 【DevCloud · 敏捷智库】两种你必须了解的常见敏捷估算方法

    背景 在某开发团队辅导的回顾会议上,团队成员对于优化估计具体方法上达成了一致意见.询问是否有什么具体的估计方法来做估算. 问题分析 回顾意见上大家对本次Sprint的效果做回顾,其中80%的成员对于本 ...

  5. Linux常用命令-文件传输类

    bye 功能说明:中断FTP连线并结束程序 语 法:bye 补充说明:在FTP模式下,输入bye即可中断正在执行的连线作业,并且结束FTP的执行 ftp(file transfer protocol) ...

  6. 最大熵原理(The Maximum Entropy Principle)

    https://wanghuaishi.wordpress.com/2017/02/21/%E5%9B%BE%E8%A7%A3%E6%9C%80%E5%A4%A7%E7%86%B5%E5%8E%9F% ...

  7. .NET Core 微服务—API网关(Ocelot) 教程 [一]

    前言: 最近在关注微服务,在 eShop On Containers 项目中存在一个API网关项目,引起想深入了解下它的兴趣. 一.API网关是什么 API网关是微服务架构中的唯一入口,它提供一个单独 ...

  8. 用Python演奏音乐

    目录 背景 准备 安装mingus 下载并配置fluidsynth 下载soundfont文件 分析 乐谱格式 乐谱解析 弹奏音乐 添加伴奏 保存音乐 完整程序 背景 笔者什么乐器也不会,乐理知识也只 ...

  9. 小白从零开始阿里云部署react项目+node服务接口(二:node服务+web)

    我们用极简的方式来创建服务,没有任何附加功能 1 新建一个server文件夹 2 使用npm init 或者yarn init  一路enter 3  yarn add  express cors  ...

  10. OSCP Learning Notes - Exploit(7)

    Pre-Exploit Password Attacks Tools: 1. ncrack Ncrack 0.6 ( http://ncrack.org )Usage: ncrack [Options ...