bzoj2194: 快速傅立叶之二
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=;
const double PI=acos(-);
struct node{
double real,imag;
void clear(){real=imag=;}
node operator +(const node &x){return (node){real+x.real,imag+x.imag};}
node operator -(const node &x){return (node){real-x.real,imag-x.imag};}
node operator *(const node &x){return (node){real*x.real-imag*x.imag,real*x.imag+imag*x.real};}
}a[maxn],b[maxn],c[maxn],t1,t2,w,wn;
int m,n,len,rev[maxn],ans[maxn];
void read(int &x){
x=; int f=; char ch;
for (ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') f=-;
for (;isdigit(ch);ch=getchar()) x=x*+ch-''; x*=f;
}
int Rev(int x){
int temp=;
for (int i=;i<=len;i++) temp<<=,temp+=(x&),x>>=;
return temp;
}
void FFT(node *a,int op){
for (int i=;i<n;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int s=;s<=n;s<<=){
wn=(node){cos(*op*PI/s),sin(*op*PI/s)};
for (int i=;i<n;i+=s){
w=(node){,};
for (int j=i;j<i+s/;j++,w=w*wn){
t1=a[j],t2=w*a[j+s/];
a[j]=t1+t2,a[j+s/]=t1-t2;
}
}
}
}
int main(){
read(m); n=,len=;
while (n<(m<<)) n<<=,len++;
for (int i=;i<n;i++) rev[i]=Rev(i);
for (int x,i=;i<m;i++) read(x),a[i].real=x,read(x),b[m--i].real=x;
FFT(a,),FFT(b,);
for (int i=;i<n;i++) c[i]=a[i]*b[i];
FFT(c,-);
for (int i=;i<n;i++) ans[i]=(int)round(c[i].real/n);
for (int i=m-;i<*m-;i++) printf("%d\n",ans[i]);
return ;
}
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2194
题目大意:请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
做法:考虑把b数组翻转,Ck的计算就成为了裸的卷积,对于这种题目,翻转是个重要的手段。
bzoj2194: 快速傅立叶之二的更多相关文章
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
- BZOJ2194: 快速傅立叶之二 FFT_卷积
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- 【BZOJ2194】快速傅立叶之二
[BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...
随机推荐
- mac osx get postgresql path
sudo lsof -i :5433 ps xuwww -p 91 sudo port install py27-psycopg2
- 下一代Asp.net开发规范OWIN(2)—— Katana介绍以及使用
接上篇OWIN产生的背景以及简单介绍,在了解了OWIN规范的来龙去脉后,接下来看一下Katana这个OWIN规范的实现,并看看如何使用在我们的Web开发中. 阅读目录: 一. Katana项目的结构和 ...
- Why Do We Need a Data Warehouse?
https://dwbi1.wordpress.com/2012/12/03/why-do-we-need-a-data-warehouse/ 经常有人来质疑数据仓库的价值,为什么我们需要花费一年多的 ...
- 网页实时聊天之PHP实现websocket
html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,bi ...
- CPU 和内存虚拟化原理 - 每天5分钟玩转 OpenStack(6)
前面我们成功地把 KVM 跑起来了,有了些感性认识,这个对于初学者非常重要.不过还不够,我们多少得了解一些 KVM 的实现机制,这对以后的工作会有帮助. CPU 虚拟化 KVM 的虚拟化是需要 CPU ...
- CentOS下配置nginx conf/koi-win为同一文件的各类错误
今天配置CentOS6.5下安装Nginx + php7 + mysql5.7.15遇到了一些坑.本来家里的电脑在配置环境的时候没有问题,拿去公司的电脑上就是到处报错.不知道是不是人品问题.今晚在家重 ...
- Java 6 JVM参数选项大全(中文版)
原文来自: http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm 本文是基于最新的SUN官方文档Java SE 6 Hotsp ...
- nginx下配置404错误页面
1.创建自己的404.html页面,并放于网站根目录. 2.更改nginx.conf在http定义区域加入: fastcgi_intercept_errors on; 3.更改nginx.conf(或 ...
- 1、策略模式(Strategy)
//抽象接口 class ReplaceAlgorithm { public: ; }; //三种具体的替换算法 class LRU_ReplaceAlgorithm : public Replace ...
- JavaScript函数的概念
函数是这样的一段代码,它只定义一次,但可能被执行或调用任意多次. JavaScript函数是参数化的:函数的定义会包含形参,这些参数在函数的整体中像局部变量一样工作.函数调用时会为形参提供实参的值.除 ...