Day4 - H - Following Orders POJ - 1270
This problem involves neither Zorn's Lemma nor fix-point semantics, but does involve order.
Given a list of variable constraints of the form x < y, you are to write a program that prints all orderings of the variables that are consistent with the constraints.
For example, given the constraints x < y and x < z there are two orderings of the variables x, y, and z that are consistent with these constraints: x y z and x z y.
Input
All variables are single character, lower-case letters. There will be at least two variables, and no more than 20 variables in a specification. There will be at least one constraint, and no more than 50 constraints in a specification. There will be at least one, and no more than 300 orderings consistent with the contraints in a specification.
Input is terminated by end-of-file.
Output
Output for different constraint specifications is separated by a blank line.
Sample Input
a b f g
a b b f
v w x y z
v y x v z v w v
Sample Output
abfg
abgf
agbf
gabf wxzvy
wzxvy
xwzvy
xzwvy
zwxvy
zxwvy 思路:
简单的拓扑排序+dfs,通过入度判断,从1到26就有字典序,代码如下:
int in[], G[][], vis[], print[], num;
char ans[]; void init() {
num = ;
memset(in, , sizeof(in));
memset(G, , sizeof(G));
memset(vis, , sizeof(vis));
memset(print, , sizeof(print));
} void dfs(int u, int cnt) {
ans[cnt] = u - + 'a';
if(cnt == num) {
for(int i = ; i <= cnt; ++i)
cout << ans[i];
cout << "\n";
return;
}
// mark the point
print[u] = ;
for(int i = ; i <= ; ++i) {
if(vis[i] && G[u][i]) in[i]--;
}
for(int i = ; i <= ; ++i) {
if(vis[i] && !print[i] && !in[i]) {
dfs(i, cnt+);
}
// backtracing
}
for(int i = ; i <= ; ++i) {
if(vis[i] && G[u][i]) in[i]++;
}
print[u] = ;
} int main() {
ios::sync_with_stdio(false);
string t;
int t1, t2;
while(getline(cin, t)) {
init();
int siz = t.size();
for(int i = ; i < siz; i += ) {
vis[t[i] - 'a' + ] = ;
num++;
}
getline(cin, t);
siz = t.size();
for(int i = ; i + < siz; i += ) {
t1 = t[i] - 'a' + , t2 = t[i+] - 'a' + ;
G[t1][t2] = , in[t2]++;
}
for(int i = ; i <= ; ++i) {
if(vis[i] && !in[i]) {
dfs(i, );
}
}
cout << "\n";
} return ;
}
Day4 - H - Following Orders POJ - 1270的更多相关文章
- POJ 1270 Following Orders
Following Orders Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4902 Accepted: 1982 ...
- H - Buy Tickets POJ - 2828 逆序遍历 树状数组+二分
H - Buy Tickets POJ - 2828 这个题目还是比较简单的,其实有思路,不过中途又断了,最后写了一发别的想法的T了. 然后脑子就有点糊涂,不应该啊,这个题目应该会写才对,这个和之前的 ...
- POJ 1270 Following Orders 拓扑排序
http://poj.org/problem?id=1270 题目大意: 给你一串序列,然后再给你他们部分的大小,要求你输出他们从小到大的所有排列. 如a b f g 然后 a<b ,b< ...
- POJ 1270 Following Orders (拓扑排序,dfs枚举)
题意:每组数据给出两行,第一行给出变量,第二行给出约束关系,每个约束包含两个变量x,y,表示x<y. 要求:当x<y时,x排在y前面.让你输出所有满足该约束的有序集. 思路:用拓扑排 ...
- poj 1270 Following Orders (拓扑排序+回溯)
Following Orders Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5473 Accepted: 2239 ...
- POJ 1270 Following Orders(拓扑排序)题解
Description Order is an important concept in mathematics and in computer science. For example, Zorn' ...
- POJ 1270 Following Orders(拓扑排序)
题意: 给两行字符串,第一行为一组变量,第二行时一组约束(每个约束包含两个变量,x y 表示 x <y).输出满足约束的所有字符串序列. 思路:拓扑排序 + 深度优先搜索(DFS算法) 课本代码 ...
- poj 1270(toposort)
http://poj.org/problem?id=1270 题意:给一个字符串,然后再给你一些规则,要你把所有的情况都按照字典序进行输出. 思路:很明显这肯定要用到拓扑排序,当然看到discuss里 ...
- poj 1270(dfs+拓扑排序)
题目链接:http://poj.org/problem?id=1270 思路:就是一简单的dfs+拓扑排序,然后就是按字典序输出所有的情况. http://paste.ubuntu.com/59872 ...
随机推荐
- 笔记-AJAX
笔记-AJAX 1. 简介 Ajax 即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML AJAX 是一种用于创建快速动态网页的技术 ...
- ubuntu修改pip的官方源为豆瓣源
修改官方源为豆瓣源: 编辑配置文件, 如果没有, 新建一份(我这里没有): mkdir ~/.pipvim ~/.pip/pip.conf 添加内容如下: [global] index-url = h ...
- idea没有import project解决办法
参考:https://blog.csdn.net/zengxiaosen/article/details/52807540
- 【转】python装饰器
什么是装饰器? python装饰器(fuctional decorators)就是用于拓展原来函数功能的一种函数,目的是在不改变原函数名(或类名)的情况下,给函数增加新的功能. 这个函数的特殊之处在于 ...
- 【原】python异步学习
https://www.liaoxuefeng.com/wiki/1016959663602400/1017959540289152 https://www.jianshu.com/p/b5e347b ...
- Java基础 -2.3
浮点数类型 所有的数据类型进行自动转型的时候都是由小类型到大类型进行自动转换处理.默认的类型为double,但是也可以定义位数相对较少的float变量 ,此时从赋值的时候就必须采用强制类型转换 pub ...
- Java基础 -1.2
Shell是脚本程序的含义 在很多编程语言中为了方便使用者进行代码的开发 都会有shell交互式编程环境 可能是为了进行一些简短的程序验证 但是在java里面就必须编写很多的结果代码才可以实现 为了解 ...
- sparkRDD:第3节 RDD常用的算子操作
4. RDD编程API 4.1 RDD的算子分类 Transformation(转换):根据数据集创建一个新的数据集,计算后返回一个新RDD:例如:一个rdd进行map操作后生了一个新的rd ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)D(树状数组)
//树状数组中数组的特性,有更巧妙的方法.//我们知道在树状数组中,对于数组tree[i],它所维护的区间为[i−lowbit(i)+1,i]//所以对于tree[2^i],它所维护的区间就为[1,2 ...
- 【转】ERP系统测试方法
问题: 1.如何进行ERP系统测试用例设计? 2.ERP系统测试用例设计过程? 3.ERP系统测试用例设计的方法? ERP系统本身是一种业务流程很复杂,单据报表众多,逻辑性很强的系统,质量保证方 ...