开始学习网络数据挖掘方面的知识,首先从Beautiful Soup入手(Beautiful Soup是一个Python库,功能是从HTML和XML中解析数据),打算以三篇博文纪录学习Beautiful Soup的过程,第一篇是Beautiful Soup基础知识,后两篇利用前边的Beautiful Soup知识完成一个简单的爬虫,抓取allitebook.com的书籍信息和ISBN码,再根据ISBN码去amazon.com抓取书籍对应的价格。

一、Beautiful Soup简介

网络数据挖掘指的是从网站中获取数据的过程,数据挖掘技术可以让我们从网站世界中收集大量有价值的数据。
Beautiful Soup是一个Python库,可以从HTML或XML文件中获取数据,利用它你可以做很多事情,比如你可以持续解析某个商品的最新价格,以便跟踪价格的波动情况。


二、Beautiful Soup安装(Mac)


安装Beautiful Soup
sudo pip3 install beautifulsoup4
 
检验是否安装成功
from bs4 import BeautifulSoup
三、创建一个Beautiful Soup对象
html_atag = """<html><body><p>Test html a tag example</p>
<a href="http://www. allitebook.com">Home</a>
<a href="http://www.allitebook.com/books">Books</a>
</body>
</html>"""
soup = BeautifulSoup(html_atag, "html5lib")
print(soup.a)
四、查找内容

find()方法
在find()方法中传入节点名,例如ul,这样就可以获取第一个匹配的ul节点的内容,例如:

#input
html_markup = """<div>
<ul id="students">
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li>
<li class="student">
<div class="name">Lucy</div>
<div class="age">25</div>
</li>
</ul>
</div>"""
student_entries = soup.find("ul")
print(student_entries) #output
<ul id="students">
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li>
<li class="student">
<div class="name">Lucy</div>
<div class="age">25</div>
</li>
</ul>

找到ul节点后,通过观察html可以得知,ul下有2个li,每个li下有2个div,则通过student_entries.li可以获取第一个li节点的数据,继续通过student_entries.li.div可以获取第一个li下第一个div的数据,例如:

#input
print(student_entries.li)
#output
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li> #input
print(student_entries.li.div)
#output
<div class="name">Carl</div>
继续通过div.string可以获取div的内容:
#input
print(student_entries.li.div.string)
#output
'Carl'
使用正则表达式查找:
find()方法支持根据正则表达式查找内容,例如:
#input
import re
email_id_example ="""<div>The below HTML has the information that has email ids.</div>
abc@example.com
<div>xyz@example.com</div>
<span>foo@example.com</span>"""
soup = BeautifulSoup(email_id_example,"lxml")
emailid_regexp = re.compile("\w+@\w+\.\w+")
first_email_id = soup.find(text=emailid_regexp)
print(first_email_id) #output
abc@example.com
find_all()方法
find()方法返回第一个匹配的内容,find_all()方法会返回所有匹配的内容列表,例如上面的根据正则表达式查找邮箱地址,将find()方法换成find_all()方法,则会返回所有匹配成功的内容:
#input
all_email_id = soup.find_all(text=emailid_regexp)
print(all_email_id) #output
['abc@example.com', 'xyz@example.com', 'foo@example.com']
find_parent()方法
find_parent()方法往上查找内容,例如,从第一个li节点上使用find_parent()方法,可以获取父节点的内容:
#input
print(first_student) #output
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li> #input
all_students = first_student.find_parent('ul')
print(all_students) #output
<ul id="students">
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li>
<li class="student">
<div class="name">Lucy</div>
<div class="age">25</div>
</li>
</ul>
find_next_sibling()方法
sibling是兄弟姐妹的意思,find_next_sibling()方法获取下一个同级别的兄弟节点,例如:
#input
second_student = first_student.find_next_sibling()
print(second_student) #output
<li class="student">
<div class="name">Lucy</div>
<div class="age">25</div>
</li>
其它方法还有很多,例如:
find_next()方法
find_all_next()方法
find_previous_sibling()方法
find_all_previous()方法
用法都差不多,这里不再一一赘述,具体请查看官方文档:https://www.crummy.com/software/BeautifulSoup/bs4/doc/#searching-the-tree


五、浏览内容


浏览子节点
使用子节点的标签名即可获取子节点的内容,例如:
#input
print(first_student) #output
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li> #input
name = first_student.div
print(name) #output
<div class="name">Carl</div>
浏览父节点
使用.parent属性可以浏览父节点,例如:
#input
print(name.parent) #output
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li>
浏览兄弟节点即同级节点,next_sibling和previous_sibling属性分别获取上一个和下一个兄弟节点。例如:
#input
print(first_student.next_sibling) #output
<li class="student">
<div class="name">Lucy</div>
<div class="age">25</div>
</li>
 


六、修改内容


修改标签的名字
可以通过.name属性获取某个节点的标签名,同样将某个标签名赋值给.name属性可以很轻易改变标签的名称,例如:
#input
first_student
#output
<li class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</li> #input
first_student.name
#output
'li' #input
first_student.name = 'div'
first_student.name
#output
'div' #input
first_student
#output
<div class="student">
<div class="name">Carl</div>
<div class="age">32</div>
</div>
修改标签的属性
#input
first_student['class'] = 'student_new'
print(first_student)
#output
<div class="student_new">
<div class="name">Carl</div>
<div class="age">32</div>
</div>
注意:如果class属性没有的话,则此操作不会报错,而变为一个新增操作。

删除一个标签的属性
使用del方法可以将一个节点的某个属性删除。例如:
#input
del first_student['class']
print(first_student) #output
<div>
<div class="name">Carl</div>
<div class="age">32</div>
</div>
修改标签的内容
使用.string属性可以获取标签的内容值('Carl'),同样,对此属性的赋值操作也可以更该其值,例如:
#input
print(first_student.div.string) #output
Carl #input
first_student.div.string = 'carl_new'
print(first_student.div.string) #output
carl_new
直接删除某个节点
使用decompose()方法可以直接删除某个节点:
#input
print(first_student)
#output
<li class="student">
<div class="name">carl_new</div>
<div class="age">32</div>
</li> #input
first_student.div.decompose()
print(first_student)
#output
<li class="student">
<div class="age">32</div>
</li>
使用extract()方法同样可以删除某个节点,不过它和decompose()方法不同的是,extract()会返回被删除的这个节点的内容。
 
我们处于大数据时代,对数据处理感兴趣的朋友欢迎查看另一个系列随笔:利用Python进行数据分析 基础系列随笔汇总
 
接下来将利用这篇的Beautiful Soup基础知识完成一个简单的爬虫,分别获取两个网站的书籍信息和价格并组合在一起并输出到csv文件中。有兴趣的朋友欢迎关注本博客,也欢迎大家留言进行讨论。
 
大数据,大数据分析、BeautifulSoup,Beautiful Soup入门,数据挖掘,数据分析,数据处理,pandas,网络爬虫,web scraper

网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(1): 基础知识Beautiful Soup的更多相关文章

  1. 网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(3): 抓取amazon.com价格

    通过上一篇随笔的处理,我们已经拿到了书的书名和ISBN码.(网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(2): 抓取allitebooks.com书籍信息 ...

  2. 网络爬虫: 从allitebooks.com抓取书籍信息并从amazon.com抓取价格(2): 抓取allitebooks.com书籍信息及ISBN码

    这一篇首先从allitebooks.com里抓取书籍列表的书籍信息和每本书对应的ISBN码. 一.分析需求和网站结构 allitebooks.com这个网站的结构很简单,分页+书籍列表+书籍详情页. ...

  3. Python 3网络爬虫开发实战中文PDF+源代码+书籍软件包(免费赠送)+崔庆才

    Python 3网络爬虫开发实战中文PDF+源代码+书籍软件包+崔庆才 下载: 链接:https://pan.baidu.com/s/1H-VrvrT7wE9-CW2Dy2p0qA 提取码:35go ...

  4. Python 网络爬虫 005 (编程) 如何编写一个可以 下载(或叫:爬取)一个网页 的网络爬虫

    如何编写一个可以 下载(或叫:爬取)一个网页 的网络爬虫 使用的系统:Windows 10 64位 Python 语言版本:Python 2.7.10 V 使用的编程 Python 的集成开发环境:P ...

  5. Python简单网络爬虫实战—下载论文名称,作者信息(下)

    在Python简单网络爬虫实战—下载论文名称,作者信息(上)中,学会了get到网页内容以及在谷歌浏览器找到了需要提取的内容的数据结构,接下来记录我是如何找到所有author和title的 1.从sou ...

  6. 网络爬虫:使用Scrapy框架编写一个抓取书籍信息的爬虫服务

      上周学习了BeautifulSoup的基础知识并用它完成了一个网络爬虫( 使用Beautiful Soup编写一个爬虫 系列随笔汇总 ), BeautifulSoup是一个非常流行的Python网 ...

  7. 使用Beautiful Soup编写一个爬虫 系列随笔汇总

    这几篇博文只是为了记录学习Beautiful Soup的过程,不仅方便自己以后查看,也许能帮到同样在学习这个技术的朋友.通过学习Beautiful Soup基础知识 完成了一个简单的爬虫服务:从all ...

  8. python爬虫之Beautiful Soup基础知识+实例

    python爬虫之Beautiful Soup基础知识 Beautiful Soup是一个可以从HTML或XML文件中提取数据的python库.它能通过你喜欢的转换器实现惯用的文档导航,查找,修改文档 ...

  9. 网络爬虫中Fiddler抓取PC端网页数据包与手机端APP数据包

    1 引言 在编写网络爬虫时,第一步(也是极为关键一步)就是对网络的请求(request)和回复(response)进行分析,寻找其中的规律,然后才能通过网络爬虫进行模拟.浏览器大多也自带有调试工具可以 ...

随机推荐

  1. python与c互相调用

    虽然python开发效率很高,但作为脚本语言,其性能不高,所以为了兼顾开发效率和性能,通常把性能要求高的模块用c或c++来实现或者在c或c++中运行python脚本来处理逻辑,前者通常是python中 ...

  2. vue.js学习笔记

    有了孩子之后,元旦就哪也去不了了(孩子太小),刚好利用一些时间,来公司充充电补补课,学习学习新技术,在这里做一个整理和总结.(选择的东西,既然热爱就把他做好吧!). 下来进入咱们的学习环节: 一.从H ...

  3. Android公共title的应用

    我们在开发Android应用中,写每一个页面的时候都会建一个title,不是写一个LinearLayout就是写一个RelativeLayout,久而久之就会觉得这样繁琐,尤其几个页面是只是标题不一样 ...

  4. php 基础代码大全(不断完善中)

    下面是基础的PHP的代码,不断完善中~ //语法错误(syntax error)在语法分析阶段,源代码并未被执行,故不会有任何输出. /* [命名规则] */ 常量名 类常量建议全大写,单词间用下划线 ...

  5. 【干货分享】流程DEMO-离职流程

    流程名: 离职申请   流程相关文件: 流程包.xml WebService业务服务.xml WebService.asmx WebService.cs   流程说明: 流程中集成了webservic ...

  6. BPM配置故事之案例1-配置简单流程

    某天,Boss找到了信息部工程师小明. Boss:咱们新上了H3 BPM,你研究研究把现在的采购申请流程加上去吧,这是采购申请单. 小明:好嘞 采购申请单 小明回去后拿着表单想了想,开始着手配置. 他 ...

  7. python性能检测工具整理

    python 运行后出现core dump产生core.**文件,可通过gdb来调试 Using GDB with a core dump having found build/python/core ...

  8. linux 如何对文件解压或打包压缩

    tar命令用与对文件打包压缩或解压,格式: tar [选项] [文件] 打包并压缩文件: tar -czvf  压缩包名 .tar.gz 解压并展开压缩包: tar -xzvf  压缩包名 .tar. ...

  9. x01.os.22: ubuntu 常用设置

    新组装了个 64 位电脑,i5 CPU,进入 ubuntu 后,又是一通搜索设置,整理如下,以备后用. 安装 .dep 包 sudo dpkg -i [filename.dep] 在 ubuntu 中 ...

  10. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...