窄依赖与宽依赖&stage的划分依据
RDD根据对父RDD的依赖关系,可分为窄依赖与宽依赖2种。
主要的区分之处在于父RDD的分区被多少个子RDD分区所依赖,如果一个就为窄依赖,多个则为宽依赖。更好的定义应该是:
窄依赖的定义是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区)
与依赖相关的以下5个类:
Dependency
<--NarrowDependency
<--OneToOneDependency
<--RangeDependency
<--ShuffleDependency
它们全部在同一个Scala文件中,Dependency是一个abstract class, NarrowDependency(abstract class)与ShuffleDependency直接继承与它,OneToOneDependency与RangeDependency继承自NarrowDependency,大致如上图所示。
因此,关于Dependency的真正实现有三个,2个窄依赖:OneToOneDependency与RangeDependency,一个宽依赖:ShuffleDependency。
(一)Dependency
Dependency是一个抽象类,所有的依赖相关的类都必须继承自它。Dependency只有一个成员变量,表示的是父RDD。
/**
* :: DeveloperApi ::
* Base class for dependencies.
*/
@DeveloperApi
abstract class Dependency[T] extends Serializable {
def rdd: RDD[T]
}
(一)窄依赖
1、NarrowDependency
看看代码中对NarrowDependency的说明:
Base class for dependencies where each partition of the child RDD depends on a small number of partitions of the parent RDD. Narrow dependencies allow for pipelined execution。
即窄依赖的定义应该是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区)。
/**
* :: DeveloperApi ::
* Base class for dependencies where each partition of the child RDD depends on a small number
* of partitions of the parent RDD. Narrow dependencies allow for pipelined execution.
*/
@DeveloperApi
abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
/**
* Get the parent partitions for a child partition.
* @param partitionId a partition of the child RDD
* @return the partitions of the parent RDD that the child partition depends upon
*/
def getParents(partitionId: Int): Seq[Int] override def rdd: RDD[T] = _rdd
}
getParents根据子RDD的分区ID返回父RDD的分区ID。
主构建函数中的rdd是父RDD,下同。
2、OneToOneDependency
一对一依赖,即每个子RDD的分区的与父RDD的分区一一对应。
/**
* :: DeveloperApi ::
* Represents a one-to-one dependency between partitions of the parent and child RDDs.
*/
@DeveloperApi
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
override def getParents(partitionId: Int): List[Int] = List(partitionId)
}
重写了NarrowDependency的getParents方法,返回一个List,这个List只有一个元素,且与子RDD的分区ID相同。即子分区的ID与父分区的ID一一对应且相等。
3、RangeDependency
子RDD中的每个分区依赖于父RDD的几个分区,而父RDD的每个分区仅补一个子RDD分区所依赖,即多对一的关系。它仅仅被UnionRDD所使用。
/**
* :: DeveloperApi ::
* Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
* @param rdd the parent RDD
* @param inStart the start of the range in the parent RDD
* @param outStart the start of the range in the child RDD
* @param length the length of the range
*/
@DeveloperApi
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = {
if (partitionId >= outStart && partitionId < outStart + length) {
List(partitionId - outStart + inStart)
} else {
Nil
}
}
}
(二)宽依赖
宽依赖只有一种:shuffleDependency,即子RDD依赖于父RDD的所有分区,父RDD的分每个区被所有子RDD的分区所依赖。
/**
* :: DeveloperApi ::
* Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle,
* the RDD is transient since we don't need it on the executor side.
*
* @param _rdd the parent RDD
* @param partitioner partitioner used to partition the shuffle output
* @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If not set
* explicitly then the default serializer, as specified by `spark.serializer`
* config option, will be used.
* @param keyOrdering key ordering for RDD's shuffles
* @param aggregator map/reduce-side aggregator for RDD's shuffle
* @param mapSideCombine whether to perform partial aggregation (also known as map-side combine)
*/
@DeveloperApi
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Serializer = SparkEnv.get.serializer,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]] { override def rdd: RDD[Product2[K, V]] = _rdd.asInstanceOf[RDD[Product2[K, V]]] private[spark] val keyClassName: String = reflect.classTag[K].runtimeClass.getName
private[spark] val valueClassName: String = reflect.classTag[V].runtimeClass.getName
// Note: It's possible that the combiner class tag is null, if the combineByKey
// methods in PairRDDFunctions are used instead of combineByKeyWithClassTag.
private[spark] val combinerClassName: Option[String] =
Option(reflect.classTag[C]).map(_.runtimeClass.getName) val shuffleId: Int = _rdd.context.newShuffleId() val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
shuffleId, _rdd.partitions.length, this) _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
}
(三)stage的划分
DAG根据宽依赖来划分stage,每个宽依赖的处理均会是一个stage的划分点。同一个stage中的多个操作会在一个task中完成。因为子RDD的分区仅依赖于父RDD的一个分区,因此这些步骤可以串行执行。
窄依赖与宽依赖&stage的划分依据的更多相关文章
- Spark --【宽依赖和窄依赖】
前言 Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,暴力的理解就是stage的划分是按照有没有涉及到shuffle来划分的,没涉及的shuffle的都划 ...
- Spark 中的宽依赖和窄依赖
Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,而划分依据就是RDD之间的依赖关系.针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow de ...
- Spark宽依赖、窄依赖
在Spark中,RDD(弹性分布式数据集)存在依赖关系,宽依赖和窄依赖. 宽依赖和窄依赖的区别是RDD之间是否存在shuffle操作. 窄依赖 窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用 ...
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- 【Spark篇】--Spark中的宽窄依赖和Stage的划分
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...
- spark 源码分析之十九 -- DAG的生成和Stage的划分
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RD ...
- Spark Stage 的划分
Spark作业调度 对RDD的操作分为transformation和action两类,真正的作业提交运行发生在action之后,调用action之后会将对原始输入数据的所有transformation ...
- spark 划分stage Wide vs Narrow Dependencies 窄依赖 宽依赖 解析 作业 job stage 阶段 RDD有向无环图拆分 任务 Task 网络传输和计算开销 任务集 taskset
每个job被划分为多个stage.划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,从而避免多个stage之间的消息传递开销. http://spark. ...
- 021 RDD的依赖关系,以及造成的stage的划分
一:RDD的依赖关系 1.在代码中观察 val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) val resultRD ...
随机推荐
- linux下 redis 启动
启动文件 startredis.sh : nohup /data/redis/bin/redis-server /data/redis/etc/redis.conf & 关闭文件 stopr ...
- 视觉SLAM漫淡
视觉SLAM漫谈 1. 前言 开始做SLAM(机器人同时定位与建图)研究已经近一年了.从一年级开始对这个方向产生兴趣,到现在为止,也算是对这个领域有了大致的了解.然而越了解,越觉得这个方向难度很 ...
- 为KindEditor编辑器中的内容添加样式,使得自己定义前台页面显示效果与编辑器效果一致
KindEditor 本身自带有一定的样式,且为内部样式,在使用过程中,难免会发现部分效果不是我们想要的,因此.KindEditor提代了两种方式供使用着调用 1.内部样式.通过 cssData 属性 ...
- (DCloud)用这个来写H5,好像好厉害的样子哦
HBuilder: http://www.dcloud.io MUI: http://dev.dcloud.net.cn/mui/getting-started/ http://dev.dcloud. ...
- 原来javascript 自带 encodeURI 和 decodeURI文 方法了
今天百度一下才知道js 自带 encodeURI 和 decodeURI 方法了,之前还找了其他代码来处理(笑哭了.jpg <script type="text/javascript& ...
- Python 入门(五)条件判断和循环
if语句 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,可以用if语句实现: age = 20 if age > ...
- linux下用gcc如何生成预处理、汇编等文件
[gcc -E test.c -o test.i------>预处理文件生成.i 文件.] 1.c语言程序生成过程 C语言程序的生成过程可以简单的分为:编辑.预处理.编译.汇编.链接五个阶断. ...
- Nutch URL过滤配置规则
nutch网上有不少有它的源码解析,但是采集这块还是不太让人容易理解.今天终于知道怎么,弄的.现在把crawl-urlfilter.txt文件贴出来,让大家一块交流,也给自己备忘录一个. # Lice ...
- php学习三:函数
1. php中的函数和js中的区别 在php中,函数的形参可以给一个默认值,若有实参的传递则函数使用传递过来的参数,没有的话显示默认值 代码如下: function showSelf($name=& ...
- cocos2dx游戏--欢欢英雄传说--添加攻击按钮
接下来添加攻击按钮用于执行攻击动作.同时修复了上一版移动时的bug.修复后的Player::walkTo()函数: void Player::walkTo(Vec2 dest) { if (_seq) ...