RDD根据对父RDD的依赖关系,可分为窄依赖与宽依赖2种。 
主要的区分之处在于父RDD的分区被多少个子RDD分区所依赖,如果一个就为窄依赖,多个则为宽依赖。更好的定义应该是: 
窄依赖的定义是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区)

与依赖相关的以下5个类:

Dependency
<--NarrowDependency
<--OneToOneDependency
<--RangeDependency
<--ShuffleDependency

它们全部在同一个Scala文件中,Dependency是一个abstract class, NarrowDependency(abstract class)与ShuffleDependency直接继承与它,OneToOneDependency与RangeDependency继承自NarrowDependency,大致如上图所示。

因此,关于Dependency的真正实现有三个,2个窄依赖:OneToOneDependency与RangeDependency,一个宽依赖:ShuffleDependency。

(一)Dependency

Dependency是一个抽象类,所有的依赖相关的类都必须继承自它。Dependency只有一个成员变量,表示的是父RDD。

/**
* :: DeveloperApi ::
* Base class for dependencies.
*/
@DeveloperApi
abstract class Dependency[T] extends Serializable {
def rdd: RDD[T]
}

(一)窄依赖

1、NarrowDependency

看看代码中对NarrowDependency的说明:

Base class for dependencies where each partition of the child RDD depends on a small number of partitions of the parent RDD. Narrow dependencies allow for pipelined execution。 
即窄依赖的定义应该是子RDD的每一个分区都依赖于父RDD的一个或者少量几个分区(不依赖于全部分区)。

/**
* :: DeveloperApi ::
* Base class for dependencies where each partition of the child RDD depends on a small number
* of partitions of the parent RDD. Narrow dependencies allow for pipelined execution.
*/
@DeveloperApi
abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
/**
* Get the parent partitions for a child partition.
* @param partitionId a partition of the child RDD
* @return the partitions of the parent RDD that the child partition depends upon
*/
def getParents(partitionId: Int): Seq[Int] override def rdd: RDD[T] = _rdd
}

getParents根据子RDD的分区ID返回父RDD的分区ID。

主构建函数中的rdd是父RDD,下同。

2、OneToOneDependency

一对一依赖,即每个子RDD的分区的与父RDD的分区一一对应。

/**
* :: DeveloperApi ::
* Represents a one-to-one dependency between partitions of the parent and child RDDs.
*/
@DeveloperApi
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
override def getParents(partitionId: Int): List[Int] = List(partitionId)
}

重写了NarrowDependency的getParents方法,返回一个List,这个List只有一个元素,且与子RDD的分区ID相同。即子分区的ID与父分区的ID一一对应且相等。

3、RangeDependency

子RDD中的每个分区依赖于父RDD的几个分区,而父RDD的每个分区仅补一个子RDD分区所依赖,即多对一的关系。它仅仅被UnionRDD所使用。

/**
* :: DeveloperApi ::
* Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
* @param rdd the parent RDD
* @param inStart the start of the range in the parent RDD
* @param outStart the start of the range in the child RDD
* @param length the length of the range
*/
@DeveloperApi
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int): List[Int] = {
if (partitionId >= outStart && partitionId < outStart + length) {
List(partitionId - outStart + inStart)
} else {
Nil
}
}
}

(二)宽依赖

宽依赖只有一种:shuffleDependency,即子RDD依赖于父RDD的所有分区,父RDD的分每个区被所有子RDD的分区所依赖。

/**
* :: DeveloperApi ::
* Represents a dependency on the output of a shuffle stage. Note that in the case of shuffle,
* the RDD is transient since we don't need it on the executor side.
*
* @param _rdd the parent RDD
* @param partitioner partitioner used to partition the shuffle output
* @param serializer [[org.apache.spark.serializer.Serializer Serializer]] to use. If not set
* explicitly then the default serializer, as specified by `spark.serializer`
* config option, will be used.
* @param keyOrdering key ordering for RDD's shuffles
* @param aggregator map/reduce-side aggregator for RDD's shuffle
* @param mapSideCombine whether to perform partial aggregation (also known as map-side combine)
*/
@DeveloperApi
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Serializer = SparkEnv.get.serializer,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]] { override def rdd: RDD[Product2[K, V]] = _rdd.asInstanceOf[RDD[Product2[K, V]]] private[spark] val keyClassName: String = reflect.classTag[K].runtimeClass.getName
private[spark] val valueClassName: String = reflect.classTag[V].runtimeClass.getName
// Note: It's possible that the combiner class tag is null, if the combineByKey
// methods in PairRDDFunctions are used instead of combineByKeyWithClassTag.
private[spark] val combinerClassName: Option[String] =
Option(reflect.classTag[C]).map(_.runtimeClass.getName) val shuffleId: Int = _rdd.context.newShuffleId() val shuffleHandle: ShuffleHandle = _rdd.context.env.shuffleManager.registerShuffle(
shuffleId, _rdd.partitions.length, this) _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
}

(三)stage的划分

DAG根据宽依赖来划分stage,每个宽依赖的处理均会是一个stage的划分点。同一个stage中的多个操作会在一个task中完成。因为子RDD的分区仅依赖于父RDD的一个分区,因此这些步骤可以串行执行。

窄依赖与宽依赖&stage的划分依据的更多相关文章

  1. Spark --【宽依赖和窄依赖】

    前言 Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,暴力的理解就是stage的划分是按照有没有涉及到shuffle来划分的,没涉及的shuffle的都划 ...

  2. Spark 中的宽依赖和窄依赖

    Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,而划分依据就是RDD之间的依赖关系.针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow de ...

  3. Spark宽依赖、窄依赖

    在Spark中,RDD(弹性分布式数据集)存在依赖关系,宽依赖和窄依赖. 宽依赖和窄依赖的区别是RDD之间是否存在shuffle操作. 窄依赖 窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用 ...

  4. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

  5. 【Spark篇】--Spark中的宽窄依赖和Stage的划分

    一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...

  6. spark 源码分析之十九 -- DAG的生成和Stage的划分

    上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RD ...

  7. Spark Stage 的划分

    Spark作业调度 对RDD的操作分为transformation和action两类,真正的作业提交运行发生在action之后,调用action之后会将对原始输入数据的所有transformation ...

  8. spark 划分stage Wide vs Narrow Dependencies 窄依赖 宽依赖 解析 作业 job stage 阶段 RDD有向无环图拆分 任务 Task 网络传输和计算开销 任务集 taskset

    每个job被划分为多个stage.划分stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个stage,从而避免多个stage之间的消息传递开销. http://spark. ...

  9. 021 RDD的依赖关系,以及造成的stage的划分

    一:RDD的依赖关系 1.在代码中观察 val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) val resultRD ...

随机推荐

  1. 关于NaN(Not a Number)的问题

    在游戏运行时,代码若写得不安全很容易出现NAN的异常.一旦NAN出现整个游戏不崩溃也坏死掉了,游戏上了则是要被直接打回来的节奏,更是一个开发及测试人员每人都要扣3000块的大BUG.   一般表现为: ...

  2. hadoop3.1.0 window win7 基础环境搭建

    https://blog.csdn.net/wsh596823919/article/details/80774805 hadoop3.1.0 window win7 基础环境搭建 前言:在windo ...

  3. VC++ 使用MSSOAP访问WebService天气服务(客户端开发)

    绪论 本文介绍使用VC++编程实现访问天气Web服务的简单实例(例子来源于网络). Web天气服务 http://www.webxml.com.cn/WebServices/WeatherWebSer ...

  4. Javascript中的感叹号和函数function

    js函数前加分号和感叹号是什么意思?有什么用?:http://www.cnblogs.com/mq0036/p/4605255.html function与感叹号:https://swordair.c ...

  5. C++新式转型

    本文对四种标准C++的类型转换符:static_cast.dynamic_cast.reinterpret_cast.和const_cast进行了介绍,通过本文应当能够理解这四个类型转换操作符的含义. ...

  6. PyQt4重写事件处理方法

    PyQt中的事件处理主要以来重写事件处理函数来实现. #!/usr/bin/python # -*- coding: utf-8 -*- import sys from PyQt4 import Qt ...

  7. 一、微信小游戏开发 --- 初次在微信开发者工具里跑Egret小游戏项目

    尝试下Egret的小游戏开发,学习,学习,干IT,不学习,就得落后啊... 相关教程: Egret微信小游戏教程 微信公众平台-微信小游戏教程 微信公众平台-微信小游戏接入指南 开发版本: Egret ...

  8. 【BZOJ2661】[BeiJing wc2012]连连看 最大费用流

    [BZOJ2661][BeiJing wc2012]连连看 Description 凡是考智商的题里面总会有这么一种消除游戏.不过现在面对的这关连连看可不是QQ游戏里那种考眼力的游戏.我们的规则是,给 ...

  9. linux清理n天前的文件命令

    记得有一次面试时问题改问题.现特此记录 find ${DATADIR}/user*.log -type f -mtime +1 -exec rm {} \; DATADIR是自己定义变量 -mtime ...

  10. 将web项目打成war包部署在tomcat步骤

    将web项目打成war包部署在tomcat步骤 1.将自己的项目打成war包. 2.将打包好的war复制到${tomcat.home}/webapps项目下. 3.在${tomcat.hom}/con ...