How do you generate complementary PWM Outputs?

I would like to generate complementary PWM Outputs with adjustable dead time.

According to the STM32F401RE Microcontroller datasheet

http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN1810/PF258797,

this is possible with Timer 1 (TIM1).

So far I have attempted to configure the timer myself using information available from the TIM HAL Driver from ST:

http://developer.mbed.org/users/dreschpe/code/mbed-F401/docs/4e95b79aa640/stm32f4xx__hal__tim__ex_8c.html

and looking through an example of someone using the driver:

https://petoknm.wordpress.com/2015/01/05/rotary-encoder-and-stm32/.

Obviously, I do not want to use a HAL sensor, but this is the closest example I can get to someone using the advanced features of the timers.

Thanks!

Damien

Edit: Here is the code I went with in the end:

void ConfigurePWM(float duty_us, float period_us){
unsigned int value;
float newVal; // Ensure power is turned on
// Grabbed from lines 54-57 of analogin_api.h, modified for PWM
// This turns on the clock to Ports A, B, and C
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
// This turns on the clock to the Time 1:
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; // Set the GPIO Ports properly:
// PWM1 is connected to PA_8
// PWM1N is connected to PA_7 // Set the PWM outputs to general output pins:
// This sets the PA_7 and PA_8 pins to Alternate Function Pins
value = 0x8000 + 0x20000;
GPIOA->MODER |= value; // Set the PWM outputs to high speed:
value = 0xC000 + 0x30000;
GPIOA->OSPEEDR |= value; // Set PWM as outputs to the pins:
value = GPIOA->AFR[];
// Reset the lowest four bits:
value &= 0xFFFFFFF0;
// Configure PA_8 to AF:
value |= 0x1;
GPIOA->AFR[] = value; value = GPIOA->AFR[];
// Reset the the 4 MSB:
value &= 0x0FFFFFFF;
// Configure PA_7 to AF:
value |= 0x10000000;
GPIOA->AFR[] = value; // Set pull down resistors to PWM outputs:
value = GPIOA->PUPDR;
// Clear the bits:
value &= ~(GPIO_PUPDR_PUPDR7 | GPIO_PUPDR_PUPDR8);
// Set to pull down:
value |= GPIO_PUPDR_PUPDR7_1 | GPIO_PUPDR_PUPDR8_1;
// Set the register:
GPIOA ->PUPDR = value; // Set the prescale value to 1:
TIM1->PSC = ; // *** TIM1 control register 1: TIMx_CR1 ***
value = ;
// [9:8] Set CKD bits to zero for clock division of 1
// [7] TIMx_ARR register is buffered, set the ARPE bit to 1:
// value |= 0x80;
// [6:5] Set CMS bits to zero for edge aligned mode
// [6:5] Set CMS bits to 10 for Center Aligned mode 2, up down mode with flags set when counter reaches the top.
//value |= TIM_CR1_CMS_1;
// [4] Set DIR bit to zero for upcounting
// [3] Set OPM bit to zero so that the counter is not stopped at update event
// [2] Set URS bit to zero so that anything can create an interrupt
// [1] Set UDIS bit to zero to generate an update event
// [0] Set the CEN bit to zero to disable the counter
// * Set the TIMx_CR1 Register: *
TIM1->CR1 |= value; // *** TIM1 control register 2: TIMx_CR2 ***
value = ;
// [14] Set OIS4 bit to zero, the idle state of OC4 output
// [13] Set OIS3N bit to zero, the idle state of OC3N output
// [12] Set OIS3 bit to zero, the idle state of OC3 output
// [11] Set OIS2N bit to zero, the idle state of OC2N output
// [10] Set OIS2 bit to zero, the idle state of OC2 output
// [9] Set OIS1N bit to zero, the idle state of OC1N output
// [8] Set OIS1 bit to zero, the idle state of OC1 output
// [7] Set TI1S bit to zero, connecting only CH1 pin to TI1 input
// [6:4] Set to 111: The OC4REF signal is used as trigger output (TRGO)
// value |= TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0;
// value |= TIM_CR2_MMS_1 | TIM_CR2_MMS_0;
// [3] Set CCDS bit to zero, request sent when CCx event occurs
// [2] Set CCUS bit to 1, capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on TRGI
// value |= 0x4;
// [0] Set CCPC bit to 1, CCxE, CCxNE and OCxM are update on a commutation event, or rising edge on TRGI
// value |= 0x1;
// * Set the TIMx_CR2 Register: *
TIM1->CR2 = value; // *** TIM1 Auto Reload Register: ARR ***
value = ;
// [15:0] Set ARR bits to the frequency to be loaded in:
newVal = ceil(period_us/PWMSTEP_US);
value = (unsigned int) newVal;
// * Set the TIMx_ARR Register:
TIM1->ARR = value; // *** TIM1 capture/compare register 1: CCR1 ***
value = ;
// [15:0] Set the capture compare value to the duty cycle:
newVal = ceil(duty_us/PWMSTEP_US);
value = (unsigned int) newVal;
// * Set the TIMx_CCR1 Register:
TIM1->CCR1 = value; // *** TIM1 capture/compare register 4: CCR4 ***
value = ;
// [15:0] Set the capture compare value to the duty cycle:
newVal = ceil(duty_us/2.0f/PWMSTEP_US);
value = (unsigned int) newVal;
// * Set the TIMx_CCR1 Register:
TIM1->CCR4 = TIM1->ARR - CH4SHIFT; // *** TIM1 capture/compare mode register 2: CCMR2
value = ;
// [15] Set OC4CE bit to 0, OC4Ref is not affected by the ETRF input
// [14-12] Set the OC4M bits to '110', PWM mode 1, which is what we want I think.
value |= TIM_CCMR2_OC4M_2 | TIM_CCMR2_OC4M_1;
// [11] Set the OC4PE bit to 1, meaning read/write operations to the preload event require an update event.
value |= 0x800;
// [10] Set the OC4FE bit to 0, the output compare fast enable is disabled
// [9:8] Set the CC4S bits to 0, the channel is configured as an output.
// * Set the TIMx_CCMR2 Register: *
TIM1->CCMR2 = value; // *** TIM1 capture/compare mode register 1: CCMR1
value = ;
// [7] Set OC1CE bit to 0, OC1Ref is not affected by the ETRF input
// [6-4] Set the OC1M bits to '110', PWM mode 1, which is what we want I think.
value |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1;
// [3] Set the OC1PE bit to 1, meaning read/write operations to the preload event require an update event.
value |= 0x8;
// [2] Set the OC1FE bit to 0, the output compare fast enable is disabled
// [1:0] Set the CC1S bits to 0, the channel is configured as an output.
// * Set the TIMx_CCMR1 Register: *
TIM1->CCMR1 = value; // *** TIM1 capture/compare enable register: CCER
value = ;
// [15:4] - Don't care:
// [3] Set CC1NP bit to zero for active high.
// [2] Set CC1NE bit to 0, to de-activate the OC1N signal
// value |= 0x4;
// [1] Set the CC1P bit to zero for active high.
// [0] Set the CC1E bit to 1, to de-activate the OC1 signal
// value |= 0x1;
// * Set the TIM1_CCER Register: *
TIM1->CCER = value; // *** TIM1 break and dead-time register: BDTR
value = ;
// [15] Set MOE bit to 1 to enable the OC and OCN outputs
value |= 0x8000;
// [11] Set the OSSR bit such that the ouputs are forced to their idle mode when not running
//value |= TIM_BDTR_OSSR;
// [10] Set OSSI bit such that the outputs are forced to their idle mode when MOE = 0
value |= TIM_BDTR_OSSI;
// * Set the TIM1_BDTR register:
TIM1->BDTR = value; // *** TIM1 DMA/Interrupt enable register: DIER
value = ;
// [2] Set the CC1IE bit to 1, to trigger an interrupt when counter 1 has a match - which should be half way through the duty cycle.
value |= TIM_DIER_CC4IE;
// Set the TIM1_DIER register:
TIM1->DIER |= value; // Set the UG bit in the EGR register to kick things off:
value = ;
TIM1->EGR = value; // Configure the interrupt:
NVIC_SetVector(TIM1_CC_IRQn, (uint32_t)&TIM1_CC_IRQHandler);
NVIC_EnableIRQ(TIM1_CC_IRQn); return; }

STM32F4 How do you generate complementary PWM Outputs?的更多相关文章

  1. Generate stabilized PWM signals

    A standard technique for generating analog voltages using µCs is to use a PWM output and filter the ...

  2. Two PWM outputs from MCU combine to form a monotonic 16-bits DAC

    http://www.edn.com/design/analog/4329365/Combine-two-8-bit-outputs-to-make-one-16-bit-DAC

  3. Renesas M16C/6X -- Simple PWM Signal Generation Using DMA

    1. Requirements To generate a PWM output, we need to create a train of pulses with constant period a ...

  4. how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?

    how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...

  5. M451 PWM对照数据手册分析

    PWM_T Struct Reference Control Register » Pulse Width Modulation Controller(PWM)   typedef struct { ...

  6. 说说M451例程之PWM的寄存器讲解

    M451提供了两路PWM发生器.每路PWM支持6通道PWM输出或输入捕捉.有一个12位的预分频器把时钟源分频后输入给16位的计数器,另外还有一个16位的比较器.PWM计数器支持向上,向下,上下计数方式 ...

  7. STM32 Timer : Base Timer, Input Capture, PWM, Output Compare

    http://www.cs.indiana.edu/~geobrown/book.pdf An example of a basic timer is illustrated in Figure 10 ...

  8. STM32F4 -- How to use the DMA burst feature

    Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit ve ...

  9. STM32学习日志--使用DMA功能自动更新PWM的输出

    /******************************************************************************* 编译环境: EWARM V5.30 硬 ...

随机推荐

  1. bug处理

    当提示405 method not allowed 时候,路由可能有问题,看看路由是get/post 是否合格

  2. [Alg] 尺取法

    尺取法是在线性结构中进行搜寻满足某一条件的区间的方法. 该方法保存两个索引--首索引begin.尾索引end.判断 [begin, end] 区间是否满足条件. 移动 [begin, end] 区间的 ...

  3. Java的IO文档

    1.     File类 1.1. File类说明 存储在变量,数组和对象中的数据是暂时的,当程序终止时他们就会丢失.为了能够永 久的保存程序中创建的数据,需要将他们存储到硬盘或光盘的文件中.这些文件 ...

  4. springcloud使用Hystrix实现微服务的容错处理

    使用Hystrix实现微服务的容错处理 容错机制 如果服务提供者相应非常缓慢,那么消费者对提供者的请求就会被强制等待,知道提供者相应超时.在高负载场景下,如果不作任何处理,此类问题可能会导致服务消费者 ...

  5. React-Native 之 TabBarIOS

    前言 学习本系列内容需要具备一定 HTML 开发基础,没有基础的朋友可以先转至 HTML快速入门(一) 学习 本人接触 React Native 时间并不是特别长,所以对其中的内容和性质了解可能会有所 ...

  6. 更改jupyter notebook的主题颜色(theme) 包括pycharm

    https://blog.csdn.net/Techmonster/article/details/73382535

  7. jQuery.lazyload详解(转)

    转自:http://www.cnblogs.com/wenbo/archive/2011/07/15/2107579.html <script type="text/javascrip ...

  8. Java编程的逻辑 (22) - 代码的组织机制

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  9. webstorm减少内存占用

    首先,按照我说的设置之后要重启才行. 在项目里找到不需要监听的文件夹右键:Mark Directory As => Cancel Exclusion 然后重启,嘿嘿,成功了!

  10. 017 jquery中对样式的操作

    1.样式操作 2.css-dom操作 3.程序 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...