现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

跑一遍克鲁斯卡尔,记录每种权值的边有多少条,然后状压枚举满足条件的所有边乘到答案中即可

/**************************************************************
Problem: 1016
User: walfy
Language: C++
Result: Accepted
Time:68 ms
Memory:1452 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct edge{
int u,v,c;
bool operator<(const edge &rhs)const{
return c<rhs.c;
}
}e[N];
map<int,int>ans,id;
vector<pii>v[N];
int fa[N],prefa[N];
int Find(int x)
{
return fa[x]==x?x:fa[x]=Find(fa[x]);
}
int main()
{
fio;
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++)fa[i]=i;
int cnt=;
for(int i=;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
e[i]={a,b,c};
}
sort(e,e+m);
for(int i=;i<m;i++)
{
if(!id[e[i].c])id[e[i].c]=++cnt;
v[id[e[i].c]].pb(mp(e[i].u,e[i].v));
int x=e[i].u,y=e[i].v;
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy,ans[e[i].c]++;
}
for(int i=;i<=n;i++)
if(Find(i)!=Find(i-))
{
cout<<<<"\n";
return ;
}
for(int i=;i<=n;i++)fa[i]=i;
map<int,int>::iterator it=id.begin();
ll res=;
for(;it!=id.end();it++)
{
for(int i=;i<=n;i++)prefa[i]=fa[i];
// for(int i=0;i<v[it->se].size();i++)printf("%d %d %d\n",i,v[it->se][i].fi,v[it->se][i].se);
// puts("");
ll len=v[it->se].size(),go=-,pp=;
for(int i=;i<(<<len);i++)
{
int num=;
for(int j=;j<len;j++)
if((i>>j)&)
num++;
if(num!=ans[it->fi])continue;
else
{ bool ok=;
for(int j=;j<len;j++)
{
if((i>>j)&)
{
int x=v[it->se][j].fi,y=v[it->se][j].se;
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy;
else ok=;
}
}
if(ok)pp++,go=i;//,printf("%d\n",i);
}
for(int j=;j<=n;j++)fa[j]=prefa[j];
}
// printf("%d\n",pp);
res=(res*pp)%;
if(go==-)continue;
for(int j=;j<len;j++)
{
if((go>>j)&)
{
int x=v[it->se][j].fi,y=v[it->se][j].se;
int fx=Find(x),fy=Find(y);
if(x!=y)fa[fx]=fy;
}
}
}
cout<<res<<"\n";
return ;
}
/***********************
4 6 1 2 1 1 3 1 1 4 1 2 3 2 2 4 1 3 4 3
***********************/

bzo1016: [JSOI2008]最小生成树计数的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  2. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  3. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  4. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  5. 【bzoj1016】[JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][St ...

  6. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  7. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  8. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. EXPORT_SYMBOL使用

    EXPORT_SYMBOL只出现在2.6内核中,在2.4内核默认的非static 函数和变量都会自动导入到kernel 空间的, 都不用EXPORT_SYMBOL() 做标记的.2.6就必须用EXPO ...

  2. Oracle获取当前session ID的方法

    1.使用v$mystat视图获取当前session的ID select sid from v$mystat; 2.使用userenv内部函数获取当前session的ID select userenv( ...

  3. java通过url抓取网页数据

    在很多行业中,要对行业数据进行分类汇总,及时分析行业数据,对于公司未来的发展,有很好的参照和横向对比.所以,在实际工作,我们可能要遇到数据采集这个概念,数据采集的最终目的就是要获得数据,提取有用的数据 ...

  4. python的数据类型的有序无序

    列表有序可变 字典无序不可变 元组不可变 集合无序不可变 数字不可变 字符串不可变

  5. Linux系统——ACL权限控制及特殊权限

    ACL权限控制 ACL(access control list),可以提供除属主.属组.其他人的rwx权限之外的细节权限设定 ACL的权限控制 (1)User 使用者 (2)Group 群组 (3)M ...

  6. DevStore分享:详析消费者十大心理学

    做生意,其实就是一个恋爱的过程,让用户找到你.了解你,爱上你.而这个过程中的关键点就是用户.只要与用户心理相关的,那么就会影响到他们的购买决策.而作为卖方的你,就应该了解消费者心里面在想些什么. 第一 ...

  7. iClap:产品经理再忙也要看《琅琊榜》

    最先知道<琅琊榜>,是半年前偶然看了整整21分钟的<琅琊榜>片花,对麒麟才子梅长苏这一角色甚是期待,开播后每集必看,重复看,此剧果真不负众望,口碑爆棚,收视爆红,确是一部久违的 ...

  8. Python --之练习题

    一,两个小组对战,对战规则如下:team1 = ['a','b','c']team2 = ['x','y','z'] #a 不和x对战,b 不和y,z 对战# for i in team1: #法一# ...

  9. Axure的总结

    1.Axure的用途      Axure RP 能帮助网站需求设计者,快捷而简便的创建基于网站构架图的带注释页面示意图.操作流程图.以及交互设计,并可自动生成用于演示的网页文件和规格文件,以提供演示 ...

  10. C++文件操作:打开文件和写入文件

    如果程序的运行结果仅仅显示在屏幕上,当要再次查看结果时,必须将程序重新运行一遍:而且,这个结果也不能被保留. 如果希望程序的运行结果能够永久保留下来,供随时查阅或取用,则需要将其保存在文件中. 文件分 ...