Problem Statement

You are given integers $R$, $G$, $B$, and $K$. How many strings $S$ consisting of R, G, and B satisfy all of the conditions below? Find the count modulo $998244353$.

  • The number of occurrences of R, G, and B in $S$ are $R$, $G$, and $B$, respectively.
  • The number of occurrences of RG as (contiguous) substrings in $S$ is $K$.

Constraints

  • $1 \leq R,G,B\leq 10^6$
  • $0 \leq K \leq \mathrm{min}(R,G)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$R$ $G$ $B$ $K$

Output

Print the answer.


Sample Input 1

2 1 1 1

Sample Output 1

6

The following six strings satisfy the conditions.

  • RRGB
  • RGRB
  • RGBR
  • RBRG
  • BRRG
  • BRGR

Sample Input 2

1000000 1000000 1000000 1000000

Sample Output 2

80957240

Find the count modulo $998244353$.

这个数据范围一看就知道不好 dp,大概率是推式子。

恰好 \(k\) 个不好求,但是我们可以想到一个答案很接近的方法:将一个 RG 打包成一个数,然后让其参与排列。

按照上面这种方法,定义 \(f(i)\) 为如果有 \(i\) 个 RG,将其打包成一份后算出来的答案。易得 \(f(i)=C_{r+g+b-i}^{b}*C_{r+g-i}^{i}\)

如果定义 \(g(i)\) 为恰好有 \(i\) 个 RG 的方案数,那么考虑一个 \(f(i)\) 中算了几次 \(g(j)\),那么会发现对于一种方案中 \(j\) 个 RG,选出 \(i\) 个 RG 的方案都会被算一次。那么得到 \(f(i)=\sum\limits_{j=i}^{\infin}C_{j}^ig(j)\)

上二项式反演公式, \(g(i)=\sum\limits_{j=i}^{\infin}(-1)^{j-i}C_{j}^if(j)\)

那么这个问题就解决了。

#include<cstdio>
const int N=3e6+5,P=998244353;
int jc[N],r,g,b,k,n,ans,inv[N];
int pown(int x,int y)
{
if(!y)
return 1;
int t=pown(x,y>>1);
if(y&1)
return 1LL*t*t%P*x%P;
return 1LL*t*t%P;
}
int ct(int x,int y)
{
if(x<y)
return 0;
return 1LL*jc[x]*inv[y]%P*inv[x-y]%P;
}
int calc(int x)
{
n=r+g+b-x;
return 1LL*ct(n,b)%P*ct(n-b,x)%P*ct(n-b-x,r-x)%P;
}
int main()
{
scanf("%d%d%d%d",&r,&g,&b,&k),inv[0]=1;
for(int i=jc[0]=1;i<=r+g+b;i++)
jc[i]=1LL*jc[i-1]*i%P,inv[i]=pown(jc[i],P-2);
for(int i=k;i<=r&&i<=g;i++)
ans+=((i-k&1)? -1LL:1LL)*ct(x,k)*calc(i)%P,ans=(1LL*ans+P)%P;
printf("%d",ans);
}

[ABC266G] Yet Another RGB Sequence的更多相关文章

  1. 【arc074e】RGB Sequence(动态规划)

    [arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...

  2. [Arc074E] RGB Sequence

    [Arc074E] RGB Sequence Description 今天也在愉快地玩Minecraft!现在MM有一块1?N的空地,每个格子按照顺序标记为1到N.MM想要在这块空地上铺上红石块.绿宝 ...

  3. AtCoder - 2567 RGB Sequence

    Problem Statement There are N squares arranged in a row. The squares are numbered 1, 2, …, N, from l ...

  4. AT2567-[ARC074C]RGB Sequence【dp】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2567 题目大意 长度为\(n\)的包含三种颜色\(RGB\)的序列,\(m\)个限制\([l,r,k]\)表示 ...

  5. AT2567 RGB Sequence dp

    正解:计数dp 解题报告: 传送门! umm其实我jio得dp的题目的话就难在思想昂,,,知道状态知道转移就不难辣QAQ 所以就不说别的了直接写下思路放下代码就over辣QAQ 最基础的思想就是f[i ...

  6. [AT2567] [arc074_c] RGB Sequence

    题目链接 AtCoder:https://arc074.contest.atcoder.jp/tasks/arc074_c 洛谷:https://www.luogu.org/problemnew/sh ...

  7. 【ARC074e】RGB sequence

    Description ​ 一排\(n\)个格子,每个格子可以涂三种颜色的一种.现在给出\(m\)个形如"\([l,r]\)中必须恰好有\(x\)种颜色"的限制(\(1 \le l ...

  8. 【arc074e】RGB Sequence dp

    Description ​ 丰泽爷今天也在愉快地玩Minecraft! ​ 现在丰泽爷有一块1∗N1∗N的空地,每个格子按照顺序标记为11到NN.丰泽爷想要在这块空地上铺上红石块.绿宝石块和钻石块作为 ...

  9. ARC074 E RGB Sequence DP

    ---题面--- 题解: 首先,有一个不太直观的状态,f[i][j][k][l]表示DP到i位,三种颜色最后出现的位置分别是j, k, l的方案数.因为知道了三种颜色最后出现的位置,因此也可以得知以当 ...

  10. AtCoder Regular Contest 074 E:RGB Sequence

    题目传送门:https://arc074.contest.atcoder.jp/tasks/arc074_c 题目翻译 给你一行\(n\)个格子,你需要给每个格子填红绿蓝三色之一,并且同时满足\(m\ ...

随机推荐

  1. Redis系列19:LRU内存淘汰算法分析

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  2. [项目源码] JavaWeb校园宿舍管理系统

    jsp校园宿舍管理系统源码,采用Servlet+JSP+MySQL.包含数据库文件,界面采用bootstrap,简洁大方. 项目导入eclipse后的目录结构如下: 关注下面公众号,下载源码

  3. yum&二进制安装PostgreSQL 12

    一.yum安装&配置PostgreSQL 12 目录 一.yum安装&配置PostgreSQL 12 一.前言 1.本文主要内容 2.本文环境信息与适用范围 二.PostgreSQL安 ...

  4. crypto 加解密库简介与测试【GO 常用的库】

    〇.前言 GO 语言的标准库 crypto 提供了一组用于加密和解密的包,包括对称加密.哈希函数.数字签名.随机数生成等功能.在日常开发中,通过使用这些库,可以确保数据的安全性和完整性. 对于使用频率 ...

  5. 部分网页中仅供浏览的pdf文件下载方法

    现在越来越多的网站提供的PDF资料只能在线浏览,不提供下载功能,实际上仅仅是通过网页PDF浏览插件来访问文件资源,如果能够获取到该文件的访问地址,就可以访问下载. 以Firefox浏览器访问某大学网站 ...

  6. redis基本数据类型 set类型

    127.0.0.1:6379> SADD s1 a b c (integer) 3 127.0.0.1:6379> SMEMBERS s1 1) "b" 2) &quo ...

  7. 如何使用webgl(three.js)实现煤矿隧道、井下人员定位、掘进面、纵采面可视化解决方案——第十九课(一)

    序: 又是很久没有更新文章了,这次索性将之前做的三维煤矿项目拿出来讲讲,一是回顾技术,二是锻炼一下文笔. 随着科技的不断发展,越来越多的人开始关注煤矿采集的安全和效率问题.为了更好地展示煤矿采集的过程 ...

  8. [GKCTF 2020]cve版签到

    通过题目的提示可知,这是一个CVE(cve-2020-7066)的复现 点击进之后也无回显 看了这个cve之后,知道这个cve就是这个get_headers()会截断URL中空字符后的内容 就根据cv ...

  9. 深入理解 python 虚拟机:GIL 源码分析——天使还是魔鬼?

    深入理解 python 虚拟机:GIL 源码分析--天使还是魔鬼? 在目前的 CPython 当中一直有一个臭名昭著的问题就是 GIL (Global Interpreter Lock ),就是全局解 ...

  10. SQL基础应用

    SQL基础应用 更多详细内容请查阅:https://www.jianshu.com/p/08c4b78402ff 1.SQL介绍 结构化查询语言 5.7 以后符合SQL92严格模式 通过sql_mod ...