POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)
题目链接:
http://poj.org/problem?id=2253
Description
Unfortunately Fiona's stone is out of his jump range. Therefore
Freddy considers to use other stones as intermediate stops and reach her
by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously
must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two
stones therefore is defined as the minimum necessary jump range over
all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and
all other stones in the lake. Your job is to compute the frog distance
between Freddy's and Fiona's stone.
Input
input will contain one or more test cases. The first line of each test
case will contain the number of stones n (2<=n<=200). The next n
lines each contain two integers xi,yi (0 <= xi,yi <= 1000)
representing the coordinates of stone #i. Stone #1 is Freddy's stone,
stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a
blank line following each test case. Input is terminated by a value of
zero (0) for n.
Output
each test case, print a line saying "Scenario #x" and a line saying
"Frog Distance = y" where x is replaced by the test case number (they
are numbered from 1) and y is replaced by the appropriate real number,
printed to three decimals. Put a blank line after each test case, even
after the last one.
Sample Input
2
0 0
3 4 3
17 4
19 4
18 5 0
Sample Output
Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
题意描述:
输入几个顶点的坐标
计算并输出从一号顶点到二号顶点所有最短路径中的最长距离
解题思路:
首先求出最短路径,Dijkstra算法不变,变化的是dis数组中存储的是所走的最短路径中最短的一段距离,在更新dis数组是加上判断条件即可。
属于最短路径最大权值,题目很经典,另还需了解
最短路径双重最小权值请参考:http://www.cnblogs.com/wenzhixin/p/7405802.html
最长路径最小权值请参考:http://www.cnblogs.com/wenzhixin/p/7336948.html
AC代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
struct Node
{
double x,y;
};
struct Node node[];
double e[][],dis[];
int main()
{
int n,book[],i,j,u,v,t=;
double x,y,inf=,mins;
while(scanf("%d",&n),n != )
{
for(i=;i<=n;i++)
for(j=;j<=n;j++)
e[i][j]=inf;
for(i=;i<=n;i++)
scanf("%lf%lf",&node[i].x,&node[i].y);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i != j)
e[i][j]=sqrt(fabs(node[i].x-node[j].x)*fabs(node[i].x-node[j].x)
+fabs(node[i].y-node[j].y)*fabs(node[i].y-node[j].y));
}
} for(i=;i<=n;i++)
dis[i]=e[][i];
memset(book,,sizeof(book));
book[]=;
for(i=;i<=n-;i++)
{
mins=inf;
for(j=;j<=n;j++)
{
if(!book[j] && dis[j] < mins)
{
mins=dis[j];
u=j;
}
}
book[u]=;
for(v=;v<=n;v++)
{
if(!book[v] && e[u][v] < inf)
{
if(dis[v] > max(dis[u],e[u][v]))
dis[v]=max(dis[u],e[u][v]);
}
}
}
printf("Scenario #%d\nFrog Distance = %.3lf\n\n",t++,dis[]);
}
return ;
}
使用Floyd算法更为精简
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const int inf = ;
const int maxn = ;
struct Node {
double x,y;
}node[]; double e[maxn][maxn]; double dis(Node a, Node b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} int main()
{
int n,kase = ;
while(scanf("%d", &n) == && n) {
for(int i = ; i <= n ; i++) {
scanf("%lf%lf", &node[i].x, &node[i].y);
} for(int i = ; i <=n; i++) {
for(int j = ; j <= n; j++){
e[i][j] = i == j? : inf;
}
}
for(int i = ; i < n; i++) {
for(int j = i + ; j <= n; j++){
e[i][j] = e[j][i] = dis(node[i], node[j]);
}
} for(int k = ; k <= n; k++) {
for(int i = ; i <= n; i++) {
for(int j = ; j <= n; j++) {
e[i][j]=min(e[i][j], max(e[i][k],e[k][j]));
}
}
}
printf("Scenario #%d\nFrog Distance = %.3f\n\n", kase++, e[][]);
}
return ;
}
POJ 2253 Frogger(Dijkstra变形——最短路径最大权值)的更多相关文章
- NYOJ 1248 海岛争霸(Dijkstra变形——最短路径最大权值)
题目链接: http://acm.nyist.net/JudgeOnline/problem.php?pid=1248 描述 神秘的海洋,惊险的探险之路,打捞海底宝藏,激烈的海战,海盗劫富等等.加勒比 ...
- poj 2253 Frogger dijkstra算法实现
点击打开链接 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 21653 Accepted: 7042 D ...
- POJ 2253 - Frogger - [dijkstra求最短路]
Time Limit: 1000MS Memory Limit: 65536K Description Freddy Frog is sitting on a stone in the middle ...
- POJ. 2253 Frogger (Dijkstra )
POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...
- POJ 2253 Frogger(dijkstra 最短路
POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...
- POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...
- 最短路(Floyd_Warshall) POJ 2253 Frogger
题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...
- POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)
POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...
- POJ 2253 Frogger【最短路变形——路径上最小的最大权】
链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
随机推荐
- HTTPS加密流程超详解(二)
2.进入正题 上篇文章介绍了如何简单搭建一个环境帮助我们分析,今天我们就进入正题,开始在这个环境下分析. 我们使用IE浏览器访问Web服务器根目录的test.txt文件并抓包,可以抓到如下6个包(前面 ...
- 响应式布局—设备像素密度测试 (-webkit-min-device-pixel-ratio)
最近遇到这种头疼的问题,百思不得其解,不耻下问,悬梁刺股这些事情都做过之后,终于看到希望,于是攒见好就收,感觉整理分享给大家,希望有所帮助. 对手机分辨率和网页像素的初步认识是,是2倍的差别. 但 ...
- thinkinginjava学习笔记09_内部类
定义与创建 将一个类定义放在另一个类.方法.作用域.匿名类等地方,就是内部类:内部类只能由外部类对象创建(通过外部方法或者.new方法),内部类对象创建时必须已经有一个外部类对象,并且与之连接(在内部 ...
- thinkinginjava学习笔记08_接口
抽象类和抽象方法 抽象方法是指没有具体实现的方法,仅仅有方法的声明和没有方法体:使用abstract关键字定义一个抽象方法:包含抽象方法的类成为抽象类,如果一个类中包含抽象方法则必须使用abstrac ...
- 浏览器根对象window之screen
1. screen 1.1 availHeight/Width screen.availWidth返回浏览器窗口可占用的水平宽度(单位:像素). screen.availHeight返回浏览器窗口在屏 ...
- hidden,display,visibility ,jQuery中的hide()区别
hidden是html中的属性,规定元素是否可见 display是css中的样式,规定元素是否显示 visible 是css中的样式,规定元素是否可见 display:none ---不为被隐藏的对象 ...
- Java学习笔记20---内部类之对成员内部类的补充说明(一)
上篇文章--笔记19简要介绍了成员内部类.局部内部类和匿名内部类,下面对成员内部类再补充一些内容. 主要有以下6点: 1.成员内部类不可以有静态成员,成员变量为static final时除外 2.外部 ...
- msgpack库的神奇用法
一般来说,我们会把头部和实际消息分开定义,因为内部工作的worker之间发送消息有些额外的字段,这些字段不属于实际的消息.这时候我们会把worker消息中一个字段定义为interface{}或者obj ...
- centos7下固定IP(静态IP)网络配置
关于centos下网络配置(这里使用静态IP方法) 动态ip网络配置可参考我的另一篇博文http://www.cnblogs.com/albertrui/p/7811868.html 1.编辑/etc ...
- 【Java】synchronized与lock的区别
从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock. 也许有朋友会问,既然都可以通过synchronized来实现同步访问了 ...