P1357 花园

题目描述

小\(L\)有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为\(1~N(2<=N<=10^{15})\)。他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻\(M(2<=M<=5,M<=N)\)个花圃中有不超过\(K(1<=K<M)\)个\(C\)形的花圃,其余花圃均为\(P\)形的花圃。

例如,\(N=10,M=5,K=3\)。则

\(CCPCPPPPCC\)是一种不符合规则的花圃;

\(CCPPPPCPCP\)是一种符合规则的花圃。

请帮小\(L\)求出符合规则的花园种数\(Mod\) 1000000007

由于请您编写一个程序解决此题。

输入输出格式

输入格式:

一行,三个数\(N,M,K\)。

输出格式:

花园种数\(Mod\) 1000000007

说明

40%的数据中,\(N<=20\);

60%的数据中,\(M=2\);

80%的数据中,\(N<=10^5\)。

100%的数据中,\(N<=10^{15}\)。


这道题的思维难度是真的大(也可能是我菜)

请顺着看(我就是因为直接看别人题解没彻底理解前面的就去往后翻导致理解了很久)


80分给了状压DP

不考虑环时

令\(dp[i][j]\)代表当进行到第\(i\)个位置时,前\(M\)位的状态为\(j\)

\(dp[i][j]=dp[i-1][k]\),\(k\)为合法的前一位状态。

关于状压的思路,有两个导向性。

(1) \(2<=M<=5\)

(2) 当进行转移时,要想知道合不合法得知道前\(M\)位上的所有数。


当然,如果想不到如何处理环,状压的80分也白瞎。

想想在状压中,我们的状态实质上是一个区间,我们进行递推的时候,实际上相当于把这个区间向右滑动。

如果我们这时候只对一个初始合法区间\(j_0\)进行移动,当移动了\(n\)次以后,它可能到达很多个状态。但是如果它和自己重合了,不就连成了一个环了吗?

这时候\(dp[n][j_0]\)就代表只移动合法区间\(j_0\)所构成的环的方案数。

我们把每个初始合法区间都做一次这样的状压\(DP\),统计答案。

复杂度:\(O(M!^3*N)\)

当然实际上我们通过预处理,可以得到类似\(dx[i][j]\)这样的数组,表示状态\(i\)是否可以到达状态\(j\)。使复杂度远远达不到上界。


我们发现,\(N\)的长度和\(dx[i][j]\)没有什么关系,而\(dx[i][j]\)又是一个矩阵。

那么当忽略\(i\)这一维度时,\(dp[j]\)通过\(dx[i][j]\)向后一位进行递推,不就是矩阵乘法吗?

左边是推到某一位了,和右边矩阵相乘得到下一位。

可以直接用矩阵快速幂求解可达性矩阵的\(N\)次方,然后与每一个初始合法状态相乘。

我们发现,可达性矩阵和第\(j\)个状态的初始矩阵进行相乘后,只能取\((j,j)\)位置的值,所以最终的答案即是可达性矩阵乘方后对角线值之和。


Code:

#include <cstdio>
#include <cstring>
#define ll long long
const int N=123;
const ll mod=1e9+7;
ll n;
int m,k,len;
struct matrix
{
ll dx[N][N];
matrix()
{
memset(dx,0,sizeof(dx));
}
matrix friend operator *(matrix n1,matrix n2)
{
matrix n3;
for(int i=0;i<=len;i++)
for(int j=0;j<=len;j++)
for(int k=0;k<=len;k++)
n3.dx[i][j]=(n3.dx[i][j]+n1.dx[i][k]*n2.dx[k][j])%mod;
return n3;
}
}d,f;
bool check(int x)
{
int cnt=k;
while(x)
{
cnt--;
x-=x&-x;
}
return cnt>=0;
}
void init()
{
scanf("%lld%d%d",&n,&m,&k);//m中不超过k个1
len=(1<<m)-1;
for(int i=0;i<=len;i++)
{
if(!check(i))
continue;
int to=(i<<1)&len;
if(!check(to))
continue;
d.dx[to][i]=1;
to=to|1;
if(!check(to))
continue;
d.dx[to][i]=1;
}
for(int i=0;i<=len;i++)
f.dx[i][i]=1;
}
void quick_pow()
{
while(n)
{
if(n&1)
f=f*d;
d=d*d;
n>>=1;
}
}
void work()
{
quick_pow();
ll ans=0;
for(int i=0;i<=len;i++)
ans=(ans+f.dx[i][i])%mod;
printf("%lld\n",ans);
}
int main()
{
init();
work();
return 0;
}

2018.7.2

洛谷 P1357 花园 解题报告的更多相关文章

  1. 题解:洛谷P1357 花园

    题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换 ...

  2. 洛谷 P2058 海港 解题报告

    P2058 海港 题目描述 小K是一个海港的海关工作人员,每天都有许多船只到达海港,船上通常有很多来自不同国家的乘客. 小K对这些到达海港的船只非常感兴趣,他按照时间记录下了到达海港的每一艘船只情况: ...

  3. 洛谷 P3956 棋盘 解题报告

    P3956 棋盘 题目描述 有一个\(m×m\)的棋盘,棋盘上每一个格子可能是红色.黄色或没有任何颜色的.你现在要从棋盘的最左上角走到棋盘的最右下角. 任何一个时刻,你所站在的位置必须是有颜色的(不能 ...

  4. 洛谷 P1979 华容道 解题报告

    P1979 华容道 题目描述 小\(B\)最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时 ...

  5. BZOJ 3545 / 洛谷 P4197 Peaks 解题报告

    P4197 Peaks 题目描述 在\(\text{Bytemountains}\)有\(N\)座山峰,每座山峰有他的高度\(h_i\).有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个 ...

  6. 虔诚的墓主人(BZOJ1227)(洛谷P2154)解题报告

    题目描述 小W是一片新造公墓的管理人.公墓可以看成一块N×M的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. 当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地. ...

  7. [洛谷P1357] 花园

    题目类型:状压\(DP\) -> 矩阵乘法 绝妙然而思维难度极其大的一道好题! 传送门:>Here< 题意:有一个环形花圃,可以种两种花:0或1. 要求任意相邻的\(M\)个花中1的 ...

  8. 洛谷P1357 花园(状态压缩 + 矩阵快速幂加速递推)

    题目链接:传送门 题目: 题目描述 小L有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为1~N(<=N<=^).他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则,任意相邻 ...

  9. 洛谷 P2672 推销员 解题报告

    P2672 推销员 题目描述 阿明是一名推销员,他奉命到螺丝街推销他们公司的产品.螺丝街是一条死胡同,出口与入口是同一个,街道的一侧是围墙,另一侧是住户.螺丝街一共有N家住户,第i家住户到入口的距离为 ...

随机推荐

  1. 使用C#采集Shibor数据到Excel

    对Shibor的变化一直以来比较关注,正好最近学习了对html数据处理的一些知识,就打算拿来采集一些我需要的Shibor数据. 使用到的库 HttpAgilityPack 一个非常不错的html解析工 ...

  2. yocto-sumo源码解析(八): ProcessServer

    从前面章节的论述中,我们知道BitBakeServer实际上是一个ProcessServer,什么是ProcessServer不可不了解. 1. 类的声明: 首先这是一个python的多进程包里面的进 ...

  3. Hyperledger Fabric 账本结构解析

    前言 现在很多人都在从事区块链方面的研究,作者也一直在基于Hyperledger Fabric做一些开发工作.为了方便后来人更快的入门,本着“开源”的精神,在本文中向大家讲解一下Hyperledger ...

  4. passwd命令详解

    基础命令学习目录首页 passwd命令用于设置用户的认证信息,包括用户密码.密码过期时间等.系统管理者则能用它管理系统用户的密码.只有管理者可以指定用户名称,一般用户只能变更自己的密码. 语法 pas ...

  5. Xcode中的Target

    Xcode中的Target,主要包含下面几点知识: Target依赖 Build Phase Build Rule Target依赖 Target的依赖关系表示一个Target要构建成功,必先依赖于其 ...

  6. Scrum Meeting 10.22

    Scrum Meeting No.2 今天的主要任务是配置安卓开发环境,并运行上一届的项目. 主流的安卓开发环境有eclipse+ADT+SDK和android studio两种.两种环境的文件架构似 ...

  7. crontab任务不生效

    新建php脚本ctTest.php,代码如下: <?php /****************************************************************** ...

  8. 第二阶段Sprint冲刺会议3

     进展:讨论视频录制的具体功能,查看有关资料,开始着手编写有关代码.

  9. Task 9 从用户界面和体验分析“360极速浏览器”

    我目前使用的浏览器是360极速浏览器,下面将针对用户界面.记住用户选择.短期刺激.长期使用的好处坏处.不要让用户犯简单的错误四个方面对其进行评估: 1.用户界面: 01 可视性原则--网络没有连接或者 ...

  10. BETA5/7

    前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...