题目描述 Description

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

输入描述 Input Description

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。

接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

输出描述 Output Description

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

样例输入 Sample Input

2

2

1 2 1

1 2 0

2

1 2 1

2 1 1

样例输出 Sample Output

NO

YES

数据范围及提示 Data Size & Hint

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。

1≤n≤1000000

1≤i,j≤1000000000

#include<cstdio>
#include<iostream>
#define M 2000010
#define mod 2000007
#define jia 1000007
using namespace std;
int fa[M],n,ma,mw;
struct node
{
int a,b;
};node ac[M/],wa[M/];
int find(int x)
{
if(fa[x]==x)return fa[x];
return fa[x]=find(fa[x]);
}
int main()
{
int T,m;
scanf("%d",&T);
while(T--)
{
ma=,mw=;
scanf("%d",&m);
for(int i=;i<=m;i++)
{
int x,y,fl;
scanf("%d%d%d",&x,&y,&fl);
x=((x%mod)+jia)%mod;
y=((y%mod)+jia)%mod;
n=max(n,max(x,y));
if(fl)
{
ac[++ma].a=x;
ac[ma].b=y;
}
else
{
wa[++mw].a=x;
wa[mw].b=y;
}
}
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=ma;i++)
{
int aa=find(ac[i].a);
int bb=find(ac[i].b);
if(aa!=bb)
fa[aa]=bb;
}
int flag=;
for(int i=;i<=mw;i++)
if(find(wa[i].a)==find(wa[i].b))
{
flag=;
break;
}
if(!flag)printf("YES\n");
else printf("NO\n");
}
return ;
}

程序自动分析(codevs 4600)的更多相关文章

  1. Codevs 4600 [NOI2015]程序自动分析

    4600 [NOI2015]程序自动分析 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 传送门 题目描述 Description 在实现程序自动分析的过程中,常常需 ...

  2. codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析

    4600 [NOI2015]程序自动分析  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 在实现 ...

  3. BZOJ-4195 NOI2015Day1T1 程序自动分析 并查集+离散化

    总的来说,这道题水的有点莫名奇妙,不过还好一次轻松A 4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 836 ...

  4. BZOJ4195 程序自动分析

    Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或x ...

  5. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  6. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

  7. 【BZOJ4195】【NOI2015】程序自动分析(并查集)

    [BZOJ4195][NOI2015]程序自动分析(并查集) 题面 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设 ...

  8. [BZOJ4195] [NOI2015] 程序自动分析 (并查集)

    Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或x ...

  9. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

随机推荐

  1. pc端引入微信公众号文章

    最近做了一个小需求,结果坑特别多..... 需求是这样的,要给公司内部做一个微信公众号广告投票系统,整个项目就不多赘述了,有个小功能,要求是这样的: 点击某条记录后的“投票”按钮,在当前页面弹出弹窗显 ...

  2. JS实现跑马灯效果(向左,向上)

    <html> <head> <title>JS实现跑马灯效果</title> <style> * { font-size:12px; fon ...

  3. No-12.函数进阶

    函数进阶 目标 函数参数和返回值的作用 函数的返回值 进阶 函数的参数 进阶 递归函数 01. 函数参数和返回值的作用 函数根据 有没有参数 以及 有没有返回值,可以 相互组合,一共有 4 种 组合形 ...

  4. bzoj5138 [Usaco2017 Dec]Push a Box

    题目描述: bz luogu 题解: 暴力可以记录$AB$位置转移,这个时候状态是$n^4$的,无法接受. 考虑只记录$A$在$B$旁边时的状态,这个时候状态时$n^2$的. 所以说转移有两种,一种是 ...

  5. tkinter学习-菜单与画布

    阅读目录 Menu 菜单控件 Menubutton 菜单按钮控件 OptionMenu 选项菜单 Canvas 画布控件 Menu: 说明:菜单控件,显示菜单栏,下拉菜单和弹出菜单 属性:创建一个顶级 ...

  6. redux form

    纯粹使用react进行表单校验: class MyForm extends React.Component{ constructor(props){ super(props) this.onAddrC ...

  7. JQuery中xxx is not a function或者can not find $

    在项目中,遇到以上两个错误,反复折腾了好久,js代码写得没有问题,jquery的文件也引入了,就是反复的报告错误,xxx is not a function.如图: 就是这样的错误,shake is ...

  8. 03005_Tomcat

    1.Tomcat下载 (1)Tomcat解压版:链接:Tomcat解压版 密码:0iw0 : (2)源码:链接:源码 密码:3o43 . 2.Tomcat的目录结构 (1)bin:脚本目录   ①启动 ...

  9. 对 Servlet 的改进

    通过上一篇博客:Servlet 的详解 http://www.cnblogs.com/ysocean/p/6912191.html,我们大致知道了 Servlet 的基本用法.但是稍微分析一下 Ser ...

  10. kali-set

    Set 简介 开源的社会工程学利用套件,通常结合metasploit(部分)来使用 更改 /etc/setoolkit下的配置文件 set_config BLEEDING_EDGE="Fal ...