title: 【概率论】5-6:正态分布(The Normal Distributions Part II)

categories:

- Mathematic

- Probability

keywords:

- The Normal Distributions

toc: true

date: 2018-03-29 15:02:03



Abstract: 本文介绍正态分布的数学性质

Keywords: The Normal Distributions

开篇废话

一共要写四篇,哪来那么多废话。

首先我们要从最基础的原始的正态分布的数学原理说起

Properties of Normal Distributions

Definition

到目前为止,我们还没看到正态分布长什么样。

Definition and p.d.f. A random X has the normal distribution with mean μ\muμ and variance σ2\sigma^2σ2 (−∞&lt;μ&lt;∞-\infty&lt;\mu&lt;\infty−∞<μ<∞ and σ&gt;0\sigma &gt; 0σ>0) if X has a contimuous distribution with the following p.d.f.

f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞
f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty&lt;x&lt;\infty
f(x∣μ,σ2)=(2π)21​σ1​e−21​(σ(x−μ)​)2for−∞<x<∞

定义对于我们来说就是个准确的命名过程。那么我们接下来要证明的是定义里说的对不对?

Theorem f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty &lt; x&lt; \inftyf(x∣μ,σ2)=(2π)21​σ1​e−21​(σ(x−μ)​)2for−∞<x<∞ is a p.d.f.

思路:证明一个表达式是不是,p.d.f.,肯定要根据p.d.f.的定义,①不能出现负数,②积分结果是1。

首先观察函数,发现其不可能出现负数,所以性质1符合p.d.f.的性质

那么接下来是求积分,并确保是1,不是说不能积分么,这里怎么做呢?

首先我们令 y=x−μσy=\frac{x-\mu}{\sigma}y=σx−μ​ 那么

∫−∞∞f(x∣μ,σ2)dx=∫−∞∞1(2π)1/2e−12y2dywe shall now let:I=∫−∞∞e−12y2dy
\int^{\infty}_{-\infty}f(x|\mu,\sigma^2)dx=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{-\frac{1}{2}y^2}dy\\
\text{we shall now let:}\\
I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy
∫−∞∞​f(x∣μ,σ2)dx=∫−∞∞​(2π)1/21​e−21​y2dywe shall now let:I=∫−∞∞​e−21​y2dy

所以我们只要证明 I=(2π)1/2I=(2\pi)^{1/2}I=(2π)1/2 就算是得到结论了,但是怎么证明呢?我们用用1的特点吧,1和1相乘还是1所以我们让两个积分相乘,我们来到了二重积分的世界解决这个问题:

I2=I×I=∫−∞∞e−12y2dy⋅∫−∞∞e−12z2dz=∫−∞∞∫−∞∞e−12(y2+z2)dydzto the polar coordinates r and θ:I2=∫02π∫0∞e−12(r2)rdrdθsubstitute v=r2/2∫0∞e−vdv=1
\begin {aligned}
I^2&amp;=I\times I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy \cdot \int^{\infty}_{-\infty}e^{-\frac{1}{2}z^2}dz\\
&amp;=\int^{\infty}_{-\infty} \int^{\infty}_{-\infty}e^{-\frac{1}{2}(y^2+z^2)}dydz\\
\text{to the polar coordinates } r \text{ and } \theta :\\
I^2&amp;=\int^{2\pi}_{0} \int^{\infty}_{0}e^{-\frac{1}{2}(r^2)}rdrd\theta \\
\text{substitute }v=r^2/2\\
&amp;\int^{\infty}_{0}e^{-v}dv=1
\end{aligned}
I2to the polar coordinates r and θ:I2substitute v=r2/2​=I×I=∫−∞∞​e−21​y2dy⋅∫−∞∞​e−21​z2dz=∫−∞∞​∫−∞∞​e−21​(y2+z2)dydz=∫02π​∫0∞​e−21​(r2)rdrdθ∫0∞​e−vdv=1​

证毕。

也就证明了两个这个积分相乘的结果是1,但是我们并没有求出他的反函数。

m.g.f.

m.g.f. 一旦得到相应的均值和方差就非常简单了。

Theorem Moment Generating Function.The m.g.f. of the distribution with p.d.f. given by upside is

ψ(t)=eμt+12σ2t2 for −∞&lt;t&lt;∞
\begin{aligned}
\psi(t)&amp;=e^{\mu t+\frac{1}{2}\sigma^2t^2}&amp;\text{ for }-\infty&lt;t&lt;\infty
\end{aligned}
ψ(t)​=eμt+21​σ2t2​ for −∞<t<∞​

证明上面定理的唯一办法就是我们求一下正态分布定义中那个p.d.f.的m.g.f.看结果是否一致。

ψ(t)=E(etX)=∫−∞∞1(2π)1/2etx−(x−μ)22σ2dxsquare inside the brackets:tx−(x−μ)22σ2=μt+12σ2t2−[x−(μ+σ2t)]22σ2Therefore:ψ(t)=Ceμt+12σ2t2where: C=∫−∞∞1(2π)1/2σe−[x−(μ+σ2t)]22σ2dx
\begin{aligned}
\psi(t)&amp;=E(e^{tX})=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{tx-\frac{(x-\mu)^2}{2\sigma^2}}dx\\
\text{square inside the brackets:}\\
tx-\frac{(x-\mu)^2}{2\sigma^2}&amp;=\mu t+\frac{1}{2}\sigma^2t^2-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}\\
\text{Therefore:}\\
\psi(t)&amp;=Ce^{\mu t+\frac{1}{2}\sigma^2t^2}\\
\text{where: }\\
C&amp;=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}\sigma}e^{-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}}dx
\end{aligned}
ψ(t)square inside the brackets:tx−2σ2(x−μ)2​Therefore:ψ(t)where: C​=E(etX)=∫−∞∞​(2π)1/21​etx−2σ2(x−μ)2​dx=μt+21​σ2t2−2σ2[x−(μ+σ2t)]2​=Ceμt+21​σ2t2=∫−∞∞​(2π)1/2σ1​e−2σ2[x−(μ+σ2t)]2​dx​

然后我们用 μ+σ2t\mu+\sigma^2tμ+σ2t 替换掉 μ\muμ 并且 C=1C=1C=1 因此证明了结论的正确性

证毕。

节选自原文地址:https://www.face2ai.com/Math-Probability-5-6-The-Normal-Distributions-P2转载请标明出处

【概率论】5-6:正态分布(The Normal Distributions Part II)的更多相关文章

  1. 【概率论】5-6:正态分布(The Normal Distributions Part III)

    title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywo ...

  2. 【概率论】5-6:正态分布(The Normal Distributions Part I)

    title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keyword ...

  3. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  4. 【概率论】5-10:二维正态分布(The Bivariate Normal Distributions)

    title: [概率论]5-10:二维正态分布(The Bivariate Normal Distributions) categories: - Mathematic - Probability k ...

  5. 使用正态分布变换(Normal Distributions Transform)进行点云配准

    正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面是PCL官网上的一个例 ...

  6. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  7. 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

    正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影 ...

  8. 论文阅读 Characterization of Multiple 3D LiDARs for Localization and Mapping using Normal Distributions Transform

    Abstract 在这个文章里, 我们细致的比较了10种不同的3D LiDAR传感器, 用了一般的 Normal Distributions Transform (NDT) 算法. 我们按以下几个任务 ...

  9. 正态分布(normal distribution)与偏态分布(skewed distribution)

    存在正太分布的概念,自然也少不了偏态分布. 正态分布(normal distribution) 偏态分布(skewed distribution) 左偏态:left skewed distributi ...

随机推荐

  1. 将netcore网站部署到docker容器中

    一.背景 最近一直在看docker的教程,基础知识看的差不多了.理论总要运用于实践,所以下面我们就来把最简单的一个netcore网站托管到docker容器中. 环境:1.docker for wind ...

  2. interface Part3(实现:显示和隐式)

    1. 接口的实现实际上和类之间的继承是一样的,也是重写了接口中的方法,让其有了具体的实现内容. 2. 但需要注意的是,在类中实现一个接口时必须将接口中的所有成员都实现,否则该类必须声明为抽象类,并将接 ...

  3. git bash push 本地的commit到远程 -- ssh keys设置

    1.  检查是否已经创建 ssh keys git bash 下,cd ~/.ssh 如何出现“No such file or directory”,则表示需要创建一个ssh keys. 2. 创建新 ...

  4. webdispatch配置

    PRDPISP01:/sapmnt/WIP/profile # su - wipadm PRDPISP01:wipadm 23> cdpro PRDPISP01:wipadm 24> ls ...

  5. springboot学习入门简易版二---springboot2.0项目创建

    2 springboot项目创建(5) 环境要求:jdk1.8+ 项目结构: 2.1创建maven工程 Group id :com.springbootdemo Artifact id: spring ...

  6. Hystrix原理与实战

    Hystrix原理与实战 背景 分布式系统环境下,服务间类似依赖非常常见,一个业务调用通常依赖多个基础服务. 比如:订单服务调用商品服务,商品服务调用库存服务. 对于同步调用,当库存服务不可用时,商品 ...

  7. nginx的proxy模块详解以及参数

    文章来源 运维公会:nginx的proxy模块详解以及参数 使用nginx配置代理的时候,肯定是要用到http_proxy模块.这个模块也是在安装nginx的时候默认安装.它的作用就是将请求转发到相应 ...

  8. linux安装zookeeper,安装zkui,zookeeper可视化

    系统要求 支持的平台 ZooKeeper由多个组件组成.某些组件得到广泛支持,其他组件仅在较小的平台上受支持. 客户端是Java客户端库,应用程序使用它连接到ZooKeeper集合. Server是在 ...

  9. Make 和 Makefile快速入门

    前言 一个项目,拥有成百上千的源程序文件,编译链接这些源文件都是有规则的.Makefile是整个工程的编译规则集合,只需要一个make命令,就可以实现“自动化编译”.make是一个解释makefile ...

  10. JS 使用RSA加密解密

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>使 ...