梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model)。
1.问题引入
给定一组训练集合(training set)yi,i = 1,2,...,m,引入学习算法参数(parameters of learning algorithm)θ1,θ2,.....,θn,构造假设函数(hypothesis function)h(x)如下:
定义x0 = 1,则假设函数h(x)也可以记为以下形式:
这里xi(i = 1,2,...,n)称为输入特征(input feature),n为特征数。
对于训练集合yi,要使假设函数h(x)拟合程度最好,就要使损失函数(loss function)J(θ)达到最小,J(θ)表达式如下:
2.问题推导
目标是使J(θ)达到最小,此时的θ值即为所求参数,首先来看梯度下降的几何形式。
(1)梯度下降的几何形式
上图圈内点为初始设置的参考点,想象这是一座山的地形图,你站在参考点上准备下山,要从哪里走,下山的速度最快?选择一个方向,每次移动一小点步伐,直到移动到图正下方的蓝色区域,找到了局部最优解。显然,对于此图来说,设置的初始参考点不同,找到的局部最优解也不同。其实,真正的J(θ)大部分是如下图的形状,只有一个全局最优解:
(2)批量梯度下降(Batch Gradient Descent)法
方法是对θi进行多次迭代,迭代减去速率因子α(learning rate)乘以J(θ)对θi的偏导数。
下面推导过程取m = 1的特殊情况,即只有一个训练样本,并逐步推导至一般过程。
划线部分只有θixi与θi有关,得到的θi迭代表达式为:
推广至m个训练样本,则迭代表达式为:
但批量梯度下降的每一次迭代都要遍历所有训练样本,不适用于训练样本数量极多的情况,于是提出了随机梯度下降(Stochastic Gradient Descent)法
(3)随机梯度下降(Stochastic Gradient Descent)法
每次都只使用第j个样本,速度比批量梯度下降快了很多。
(4)两种梯度下降方法比较
下面是两种梯度下降算法的迭代等高图
批量梯度下降:
随机梯度下降(紫色线所示):
随机梯度下降的每次迭代,有可能变大或变小,但总体趋势接近全局最优解,通常参数值会十分接近最小值。
3.注意事项
(1)α的取值不宜太大或太小。
if α is too small then will take very tiny steps and take long time to converge;
if α is too large then the steepest descent may end up overshooting the minimum.
(2)由于向最优解收敛过程中偏导数会逐渐变小,收敛至最小值时偏导为0,则θi会逐渐变小,因此不需要改变α使其越来越小。
(3)α的取值需要不断测试更改,直至达到效果最好的α。
(4)当梯度下降到一定数值后,每次迭代的变化很小,这时可以设定一个阈值,只要变化小于该阈值,就停止迭代,而得到的结果也近似于最优解。
图片来源:百度
参考博客:http://www.cnblogs.com/ooon/p/4947688.html
梯度下降(Gradient Descent)小结 -2017.7.20的更多相关文章
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
- CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...
- 梯度下降(Gradient descent)
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示: 因为在上一篇中引入了一些符号,所以这里再次补充说明一下: x‘s:在这里是一个二维的向量,例如:x1(i)第i间 ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- 吴恩达深度学习:2.3梯度下降Gradient Descent
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
随机推荐
- MySql学习笔记【三、表相关操作】
创建表 CREATE TABLE [IF NOT EXISTS] table_name( column_name data_type, ... ) 如: CREATE TABLE test_table ...
- (转)JVM垃圾回收机制
一.技术背景 GC的历史比Java久远,早在1960年Lisp这门语言中就使用了内存动态分配和垃圾回收技术 二.那些内存需要回收? JVM的内存结构包括五大区域:程序计数器.虚拟机栈.本地方法栈.堆区 ...
- js常用骚操作总结
打开网址 window.open("http://www.runoob.com"); 判断是否为url var url = $("#url").val(); i ...
- Redis08-击穿&穿透&雪崩&spring data redis
一.常见概念 击穿: 概念:redis作为缓存,设置了key的过期时间,key在过期的时候刚好出现并发访问,直接击穿redis,访问数据库 解决方案:使用setnx() ->相当于一把锁,设置的 ...
- li元素之间产生间隔
是因为li标签换行导致的 简单的解决办法是将所有的li标签写到一行(不过实际上一般不会这样做) 或者把ul设置font-size为0,但这样ul中的文字就会消失,所以要记得单独给子元素设置font-s ...
- js高阶函数汇总
map() 方法返回一个新数组,数组中的元素为原始数组元素调用函数处理后的值,函数按照原始数组元素顺序依次处理元素. 注意: map() 不会对空数组进行检测. 注意: map() 不会改变原始数组. ...
- 11步教你选择最稳定的MySQL版本
11步教你选择最稳定的MySQL版本 来源:CSDN 作者:网络 发表于:2012-07-18 08:36 点击: MySQL开源数据库有多个重要分支,目前拥有的分支分别为:MySQL Cluster ...
- 一例jsonp跨域访问
对于网站A,有一链接 '/auth/list',返回json数据 {, , , , , },{, , , , , }]} 网站b某页面下可以这样写jsonp get请求 <script> ...
- node压缩文件
- angular打包(一): electron
路由问题: 打包成electron前,需要修改 index.html <base href="/"> 成 <base href="./"> ...