SVM回归
SVM回归任务是限制间隔违规情况下,尽量防止更多的样本在“街道”上。“街道”的宽度由超参数\(\epsilon\)控制
在随机生成的线性数据上,两个线性SVM回归模型,一个有较大的间隔(\(\epsilon=1.5\)),另一个间隔较小(\(\epsilon=0.5\)),训练情况如下:
代码如下:
造数据与训练:
np.random.seed(42)
m = 50
X = 2 * np.random.randn(m,1)
y = (4 + 3 * X + np.random.randn(m,1)).ravel()
from sklearn.svm import LinearSVR
svm_reg1 = LinearSVR(epsilon=1.5, random_state=42)
svm_reg2 = LinearSVR(epsilon=0.5, random_state=42)
svm_reg1.fit(X, y)
svm_reg2.fit(X,y)
可视化编码
def find_support_vectors(svm_reg, X, y):
y_pred = svm_reg.predict(X)
off_margin = (np.abs(y - y_pred) >= svm_reg.epsilon)
return np.argwhere(off_margin)
svm_reg1.support_ = find_support_vectors(svm_reg1, X, y)
svm_reg2.support_ = find_support_vectors(svm_reg2, X, y)
eps_x1 = 1
eps_y_pred = svm_reg1.predict([[eps_x1]])
def plot_svm_regression(svm_reg, X, y, axes):
x1s = np.linspace(axes[0], axes[1], 100).reshape(100, 1)
y_pred = svm_reg.predict(x1s)
plt.plot(x1s, y_pred, "k-", linewidth=2, label=r"$\hat{y}$")
plt.plot(x1s, y_pred + svm_reg.epsilon, "k--")
plt.plot(x1s, y_pred - svm_reg.epsilon, "k--")
plt.scatter(X[svm_reg.support_], y[svm_reg.support_], s=180, facecolors='#FFAAAA')
plt.plot(X, y, "bo")
plt.xlabel(r"$x_1$", fontsize=18)
plt.legend(loc="upper left", fontsize=18)
plt.axis(axes)
plt.figure(figsize=(9, 4))
plt.subplot(121)
plot_svm_regression(svm_reg1, X, y, [0, 2, 3, 11])
plt.title(r"$\epsilon = {}$".format(svm_reg1.epsilon), fontsize=18)
plt.ylabel(r"$y$", fontsize=18, rotation=0)
#plt.plot([eps_x1, eps_x1], [eps_y_pred, eps_y_pred - svm_reg1.epsilon], "k-", linewidth=2)
plt.annotate(
'', xy=(eps_x1, eps_y_pred), xycoords='data',
xytext=(eps_x1, eps_y_pred - svm_reg1.epsilon),
textcoords='data', arrowprops={'arrowstyle': '<->', 'linewidth': 1.5}
)
plt.text(0.91, 5.6, r"$\epsilon$", fontsize=20)
plt.subplot(122)
plot_svm_regression(svm_reg2, X, y, [0, 2, 3, 11])
plt.title(r"$\epsilon = {}$".format(svm_reg2.epsilon), fontsize=18)
plt.show()
可视化展示:

非线性拟合
造数据
np.random.seed(42)
m = 100
X = 2 * np.random.rand(m, 1) - 1
y = (0.2 + 0.1 * X + 0.5 * X**2 + np.random.randn(m, 1)/10).ravel()
from sklearn.svm import SVR
from sklearn.svm import SVR
svm_poly_reg1 = SVR(kernel="poly", degree=2, C=100, epsilon=0.1, gamma="auto")
svm_poly_reg2 = SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1, gamma="auto")
svm_poly_reg1.fit(X, y)
svm_poly_reg2.fit(X, y)
可视化编程
plt.figure(figsize=(9, 4))
plt.subplot(121)
plot_svm_regression(svm_poly_reg1, X, y, [-1, 1, 0, 1])
plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg1.degree, svm_poly_reg1.C, svm_poly_reg1.epsilon), fontsize=18)
plt.ylabel(r"$y$", fontsize=18, rotation=0)
plt.subplot(122)
plot_svm_regression(svm_poly_reg2, X, y, [-1, 1, 0, 1])
plt.title(r"$degree={}, C={}, \epsilon = {}$".format(svm_poly_reg2.degree, svm_poly_reg2.C, svm_poly_reg2.epsilon), fontsize=18)
plt.show()
可视化展示:

SVM回归的更多相关文章
- SVM-支持向量机(三)SVM回归与原理
SVM回归 我们之前提到过,SVM算法功能非常强大:不仅支持线性与非线性的分类,也支持线性与非线性回归.它的主要思想是逆转目标:在分类问题中,是要在两个类别中拟合最大可能的街道(间隔),同时限制间隔侵 ...
- SVM – 回归
SVM的算法是很versatile的,在回归领域SVM同样十分出色的.而且和SVC类似,SVR的原理也是基于支持向量(来绘制辅助线),只不过在分类领域,支持向量是最靠近超平面的点,在回归领域,支持向量 ...
- svm使用的一般步骤
LIBSVM 使用的一般步骤是:1)准备数据集,转化为 LIBSVM支持的数据格式 :[label] [index1]:[value1] [index2]:[value2] ...即 [l类别标号] ...
- SVM流行库LIBSvm的使用和调参
简介:Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It ...
- 【机器学习】支持向量机(SVM)
感谢中国人民大学胡鹤老师,课程深入浅出,非常好 关于SVM 可以做线性分类.非线性分类.线性回归等,相比逻辑回归.线性回归.决策树等模型(非神经网络)功效最好 传统线性分类:选出两堆数据的质心,并做中 ...
- SVM的简单介绍
ng的MI-003中12 ——SVM 一.svm目标函数的由来 视频先将LR的损失函数: 在上图中,先将y等于0 和y等于1的情况集合到一起成为一个损失函数,然后分别讨论当y等于1的时候损失函数的结果 ...
- 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用
import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...
- SVM训练结果参数说明 训练参数说明 归一化加快速度和提升准确率 归一化还原
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 - ...
- (一)使用sklearn做各种回归
#申明,本文章参考于 https://blog.csdn.net/yeoman92/article/details/75051848 import numpy as np import matplot ...
- SVM用于线性回归
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为 ...
随机推荐
- error setting certificate verify locations: CAfile: C:/Program Files/Git/mingw64/ssl/certs/ca-bundle.crt CApath: none
这个问题是因为git配置里crt证书的路径不正确导致的. 这个路径配置是在C:\Program Files\Git\etc\gitconfig中,应该所有人的配置都在这里 [diff "as ...
- docker下安装Harbor
安装docker-compose # 安装docker-compose curl -L https://github.com/docker/compose/releases/download/1.18 ...
- Halcon2DMeasure常用算子
1.create_metrology_model() create_metrology_model( : : : MetrologyHandle) 函数说明: 创建测量几何图形所需的数据结构/模型 ...
- 单页应用(SPA)是什么?
来源:https://zhuanlan.zhihu.com/p/648113861 概述 单页应用(SPA,Single Page Application)是一种网页应用或网站的设计模式,它在浏览器中 ...
- sql sever查询库中每个表是否存在某个列名 列出表名
select t.TABLE_NAME from information_schema.columns t where t.COLUMN_NAME='列名';
- 震惊!AI 编程竟然让程序员 “失业” 了?真相让人意外
在科技飞速发展的当下,AI 编程的异军突起无疑成为了整个编程领域乃至社会各界热议的焦点. 去年,全球首个AI程序员Devin横空出世,不仅能独立完成代码开发.修复Bug,甚至能通过阅读技术文档自主学习 ...
- dockerfile 由于公钥不可用,无法验证以下签名
报错 当我在打包 docker镜像时,发生了报错 $ sudo docker build -t dcgm-exporter:3.2.5 . 1.772 The following signatures ...
- Calico Kernel's RPF check is set to 'loose'
前言 K8s 集群部署使用了 calico 网络插件,而calico node 节点发生如下报错: 2023-03-13 11:19:36.622 [FATAL][828] int_dataplane ...
- 【高德地图】离线地图jsapi2.0 插件引用
当引用一个插件,但是这个插件没有时会报错: Uncaught TypeError: AMap.ControlBar is not a constructor 这里引用了罗盘这个插件 这时候需要翻看高德 ...
- delphi判断字符是否是汉字
function IsHZ(ch: WideChar): boolean; var i: Integer; begin i := Ord(ch); if (i < 19968) or (i &g ...