Digital biquad filter
Direct Form 1
The most straightforward implementation is the Direct Form 1, which has the following difference equation:
or, if normalized:
Here the ,
and
coefficients determine zeros, and
,
determine the position of the poles.
Flow graph of biquad filter in Direct Form 1:
Direct Form 2
The Direct Form 1 implementation requires four delay registers. An equivalent circuit is the Direct Form 2 implementation, which requires only two delay registers:
The Direct Form 2 implementation is called the canonical form, because it uses the minimal amount of delays, adders and multipliers, yielding in the same transfer function as the Direct Form 1 implementation. The difference equations for DF2 are:
where
//ASM example
/////////////////////////////////////////////////////////////
// //
// Process the audio stream //
// //
/////////////////////////////////////////////////////////////
#include <def21262.h>
#define SECTIONS 3 /* Number of second-order sections (biquads) */
.section /pm seg_pmco;
.global _Cascaded_IIR_Filter_SIMD;
.extern inbuf;
.extern outbuf;
.extern delaybuf;
.extern coefficients;
_Cascaded_IIR_Filter_SIMD:
/*****************************************************************************
The algorithm:
IIR Second order sections - The cannonic second-order section implemented as
"Direct Form II" biquads. Note that the SIMD architecture of the 2126x SHARC
family enables the two parallel execution units to filter the left and right
channel simultaneously. All register moves and memory reads implicitly apply
to the shadow processing element (PEy) as well as the primary computational
unit (PEx).
*****************************************************************************
Given the most general biquadratic (second order rational polynomial)
b0 + b1'*z^-1 + b2'*z^-2
H(z) = -------------------------- ,
a0 + a1'*z^-1 + a2'*z^-2
we may factor out the gain of the transfer function,
b0 (b1'/a0)*z^-1 + (b2'/a0)*z^-2
H(z) = ---- * -------------------------------
a0 (a1'/b0)*z^-1 + (a2'/b0)*z^-2
and normalize the coefficients, such that
a1*z^-1 + a2*z^-2
H(z) = A * -------------------
b1*z^-1 + b2*z^-2
where A = gain = b1'/a0
a1 = a1'/b0, a2 = a2'/b0, b1 = b1'/a0, b2 = b2'/a0
This leaves only four true filter coefficients. The gain values from
all of the sections may be combined into a single channel gain applied
apart from the inner computational loop. With the simplified coefficients,
the cannonic direct form II may be written as a pair of difference
equations:
w[n] = x[n] + a1*w[n-1] + a2*w[n-2]
y[n] = w[n] + b1*w[n-1] + b2*w[n-2]
which leads to the following pseudocode:
read(x[n])
f12=0, f2=w[n-1], read(a1)
--- Loop --------------------------------------------------------------------
f12=a1*w[n-1], f8=f8 + f12, f3=w[n-2], read(a2)
f12=a2*w[n-2], f8=x[n] + a1*w[n-2], w[n-1] -> w[n-2]', read(b1)
f12=b1*w[n-2], w[n]=x[n] + a1*w[n-2] + a2*w[n-1], f2=w[n-1], read(b2)
f12=b2*w[n-1], f8=w[n] + b1*w[n-2], w[n] -> w[n-1]', read(a1)
-----------------------------------------------------------------------------
y[n]=f8 + f12
**************************************************************************/
/* Subroutine that implements the pseudocode above */
cascaded_biquad:
bit set mode1 CBUFEN | PEYEN ; // Enable SIMD mode
b0 = delaybuf;
b1 = b0;
b3 = inbuf;
b4 = outbuf;
b9 = coefficients;
r0 = SECTIONS;
f8=dm(i3,m1); // read inbuf
r12=r12 xor r12, f2=dm(i0,m1), f4=pm(i8,m8);
lcntr=r0, do quads until lce;
f12=f2*f4, f8=f8+f12, f3=dm(i0,m1), f4=pm(i8,m8);
f12=f3*f4, f8=f8+f12, dm(i1,m1)=f3, f4=pm(i8,m8);
f12=f2*f4, f8=f8+f12, f2=dm(i0,m1), f4=pm(i8,m8);
quads:f12=f3*f4, f8=f8+f12, dm(i1,m1)=f8, f4=pm(i8,m8);
f8=f8+f12;
rts (db);
dm(i4,m1)=f8;
bit clr mode1 CBUFEN | PEYEN; // disable SIMD mode
_Cascaded_IIR_Filter_SIMD.end:
//--------------------------------------------
Digital biquad filter的更多相关文章
- biquad filter实现
原始频谱: LPF: HPF: 代码: #include<stdio.h> #include<stdlib.h> #include<errno.h> #includ ...
- 转载:EQ--biquad filter
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt https://arachnoid.com/BiQuadDesigner/index.html ...
- H5的Web Audio Api
概述 研究Web Audio Api的主要原因是:工作中需要在ios中实现声音的淡出效果,主要是通过setInterval来改audio标签的volume属性实现的,但是ios上面volume属性是只 ...
- 《DSP using MATLAB》示例Example 8.27
%% ------------------------------------------------------------------------ %% Output Info about thi ...
- 《DSP using MATLAB》示例Example 8.26
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》示例Example 8.24
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》示例Example 8.23
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》示例Example 8.22
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》示例Example 8.21
%% ------------------------------------------------------------------------ %% Output Info about thi ...
随机推荐
- python时间序列画图plot总结
画图从直觉上来讲就是为了更加清晰的展示时序数据所呈现的规律(包括趋势,随时间变化的规律(一周.一个月.一年等等)和周期性规律),对于进一步选择时序分析模型至关重要.下面主要是基于pandas库总结一下 ...
- 2017CCPC秦皇岛 L题One-Dimensional Maze&&ZOJ3992【模拟】
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3992 题意: 走迷宫,一个一维字符串迷宫,由'L'.'R'组成,分别 ...
- 第16月第10天 poco target
1. void TCPServer::start() { poco_assert (_stopped); _stopped = false; _thread.start(*this); } void ...
- 分享一款Markdown的css样式
使用 本样式在这个样式的基础上做了一些修改, 主要是对于表格和代码块以及一些细节的修改. 主要目的是用在chrome的扩展 Markdown Preview Plus中, 替换其内置的样式. 由于 M ...
- 修改weblogic的端口
两种方法可以修改,第一种方法是后台管理界面修改,第二种是配置文件修改,下面分别介绍: 1.后台修改 (1)进入weblogic登陆界面:(默认端口是7001) (2)登陆之后点击服务器----然后管理 ...
- 蓝牙HID协议笔记【转】
蓝牙HID协议笔记 转自:http://blog.sina.com.cn/s/blog_69b5d2a50101emll.html 1.概述 The Human Interface Devic ...
- jvm系列五、jvm垃圾回收机制、jvm各种参数及调优
转载自:http://yufenfei.iteye.com/blog/1746914 尊重原创. 一.GC有两种类型:Scavenge GC 和Full GC 1.Scavenge GC 一般情况下, ...
- zabbix实现对tomcat的监控
zabbix实现对tomcat的监控 工作原理 比如:当Zabbix-Server需要知道java应用程序的某项性能的时候,会启动自身的一个Zabbix-JavaPollers进程去连接Zabbix- ...
- HDU 1573
/* 同余方程组为 X = ri (mod ai) 在范围内求X的个数 先求出特解 X0: 求出 ai数组的LCM: 则有 Xi = X0+LCM 均能满足方程组,判断是否在范围内!! */ #inc ...
- [HTML]点击按钮,页面总是跳回顶端的解决方法(Clicking an button,always resets the view to top of page)
1 前言 当网页页面较长或者表单较多时,右侧会出现滚动条,然而经常会出现点击底部的<button>按钮或者<a>超链接,会出现点击后,当前页面会回到顶端. 2 方案 例如样例代 ...