题意

给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间。此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可以花费 $c$ 单位时间到达 $y_1$ 到 $y_2$ 简单路径上的任意一点。求从一个起点 $k$ 到其余所有点的最短路。

题解1:树剖+线段树优化建图

线段树优化建图大家肯定都会,然后套到树剖上的话,就想象一下 每条重链对应线段树上一段区间 即可,甚至不用为此更改写法。

这里介绍了 $O(n\times log(n))$ 做树剖+线段树优化建图的方法。

然后对线段树上 $n\times log(n)$ 个点做 $dijkstra$ 就完了。

时间复杂度 $O(n\times log(n)\times log(n\times log(n)))$。

题解2:

【bzoj4699】树上的最短路(树剖+线段树优化建图)的更多相关文章

  1. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  2. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  3. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  4. LUOGU P1967 货车运输(最大生成树+树剖+线段树)

    传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...

  5. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  6. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  7. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  8. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  9. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

随机推荐

  1. 阿里云服务器下安装LAMP环境(CentOS Linux 6.3) 安装与配置 php

    下面我们一起为服务器安装 PHP,在使用 yum 安装软件包的时候,yum 会去默认的资源库里查看我们要安装的软件包,然后到指定的服务器上下载并安装. 但是有的时候,我们要安装的软件包并没有包含在默认 ...

  2. Bootstrap 按钮(Button)插件加载状态

    通过按钮(Button)插件,您可以添加进一些交互.比如控制按钮的状态.或者为其它组件(工具栏)创建按钮组. 加载状态 如需向按钮添加加载状态,只需要简单地向 button 元素添加 data-loa ...

  3. solr dataimport

    solrconfig.xml <requestHandler name="/dataimport" class="org.apache.solr.handler.d ...

  4. Excel坐标点转线

    IWorkspaceFactory pShpWksFact = new ShapefileWorkspaceFactory(); IFeatureWorkspace pFeatWks; pFeatWk ...

  5. Oracle 数据库、实例、表空间、用户、数据库对象

    Oracle是一种数据库管理系统,是一种关系型的数据库管理系统.通常情况了我们称的“数据库”,包含了物理数据.数据库管理系统.内存.操作系统进程的组合体,就是指这里所说的数据库管理系统. 完整的Ora ...

  6. React Native 初探

    推荐文章 React Native 简介:用 JavaScript 搭建 iOS 应用 (1) React Native 简介:用 JavaScript 搭建 iOS 应用 (2) React Nat ...

  7. 2018.10.30 NOIp模拟赛 T1 改造二叉树

    [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他又和他人讨论 ...

  8. vue插件库

    各种vue插件,各种有,总有一款适合你! github地址:https://github.com/opendigg/awesome-github-vue

  9. java util - 中文、繁体转成拼音工具pinyin4j

    需要 pinyin4j-2.5.0.jar 包 代码例子 package cn.java.pinyin4j; import net.sourceforge.pinyin4j.PinyinHelper; ...

  10. JZOJ 5459. 【NOIP2017提高A组冲刺11.7】密室

    5459. [NOIP2017提高A组冲刺11.7]密室 (File IO): input:room.in output:room.out Time Limits: 1000 ms  Memory L ...