压缩感知重构算法之OMP算法python实现

压缩感知重构算法之CoSaMP算法python实现

压缩感知重构算法之SP算法python实现

压缩感知重构算法之IHT算法python实现

压缩感知重构算法之OLS算法python实现

压缩感知重构算法之IRLS算法python实现

Orthogonal Least Squares (OLS)算法流程


实验

要利用python实现,电脑必须安装以下程序

  • python (本文用的python版本为3.5.1)
  • numpy python包(本文用的版本为1.10.4)
  • scipy python包(本文用的版本为0.17.0)
  • pillow python包(本文用的版本为3.1.1)

python代码

#coding: utf-8
'''
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# DCT基作为稀疏基,重建算法为OMP算法 ,图像按列进行处理
# email:ncuzhangben@qq.com,
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
'''
#导入集成库
import math # 导入所需的第三方库文件
import numpy as np #对应numpy包
from PIL import Image #对应pillow包 #读取图像,并变成numpy类型的 array
im = np.array(Image.open('lena.bmp'))
#print (im.shape, im.dtype)uint8 #生成高斯随机测量矩阵
sampleRate=0.7 #采样率
Phi=np.random.randn(256*sampleRate,256) #生成稀疏基DCT矩阵
mat_dct_1d=np.zeros((256,256))
v=range(256)
for k in range(0,256):
dct_1d=np.cos(np.dot(v,k*math.pi/256))
if k>0:
dct_1d=dct_1d-np.mean(dct_1d)
mat_dct_1d[:,k]=dct_1d/np.linalg.norm(dct_1d) #随机测量
img_cs_1d=np.dot(Phi,im) #OLS算法函数(未完成待修改)
def cs_ols(y,D):
L=math.floor(3*(y.shape[0])/4)
residual=y #初始化残差
index=np.zeros((L),dtype=int)
for i in range(L):
index[i]= -1
result=np.zeros((256))
for j in range(L): #迭代次数
pos_temp=np.argsort(np.fabs(np.dot(np.linalg.pinv(D[:,pos]),y)))#对应步骤2 product=np.fabs(np.dot(D.T,residual))
pos=np.argmax(product) #最大投影系数对应的位置
index[j]=pos
my=np.linalg.pinv(D[:,index>=0])
a=np.dot(my,y)
residual=y-np.dot(D[:,index>=0],a)
result[index>=0]=a
return result #重建
sparse_rec_1d=np.zeros((256,256)) # 初始化稀疏系数矩阵
Theta_1d=np.dot(Phi,mat_dct_1d) #测量矩阵乘上基矩阵
for i in range(256):
print('正在重建第',i,'列。。。')
column_rec=cs_ols(img_cs_1d[:,i],Theta_1d) #利用OMP算法计算稀疏系数
sparse_rec_1d[:,i]=column_rec;
img_rec=np.dot(mat_dct_1d,sparse_rec_1d) #稀疏系数乘上基矩阵 #显示重建后的图片
image2=Image.fromarray(img_rec)
image2.show()

matlab代码

function Demo_CS_OLS()
%------------ read in the image --------------
img=imread('lena.bmp'); % testing image
img=double(img);
[height,width]=size(img);
%------------ form the measurement matrix and base matrix ---------------
Phi=randn(floor(0.5*height),width); % only keep one third of the original data
Phi = Phi./repmat(sqrt(sum(Phi.^2,1)),[floor(0.5*height),1]); % normalize each column mat_dct_1d=zeros(256,256); % building the DCT basis (corresponding to each column)
for k=0:1:255
dct_1d=cos([0:1:255]'*k*pi/256);
if k>0
dct_1d=dct_1d-mean(dct_1d);
end;
mat_dct_1d(:,k+1)=dct_1d/norm(dct_1d);
end %--------- projection ---------
img_cs_1d=Phi*img; % treat each column as a independent signal %-------- recover using omp ------------
sparse_rec_1d=zeros(height,width); % height*width的0矩阵
Theta_1d=Phi*mat_dct_1d;%测量矩阵乘上基矩阵
for i=1:width
column_rec=OLS(img_cs_1d(:,i),Theta_1d);%算法的目的是得到稀疏系数
sparse_rec_1d(:,i)=column_rec'; % sparse representation 稀疏系数
end
img_rec_1d=mat_dct_1d*sparse_rec_1d; % inverse transform 稀疏系数乘上基矩阵 %------------ show the results --------------------
figure(1)
subplot(2,2,1),imshow(uint8(img)),title('original image')
subplot(2,2,2),imagesc(Phi),title('measurement mat')
subplot(2,2,3),imagesc(mat_dct_1d),title('1d dct mat')
psnr = 20*log10(255/sqrt(mean((img(:)-img_rec_1d(:)).^2)));
subplot(2,2,4),imshow(uint8(img_rec_1d));
title(strcat('PSNR=',num2str(psnr),'dB')); %************************************************************************%
function [s, residual] = OLS(y, A, err) % Orthogonal Least Squares [1] for Sparse Signal Reconstruction % Input
% A = N X d dimensional measurment matrix
% y = N dimensional observation vector
% m = sparsity of the underlying signal % Output
% s = estimated sparse signal
% r = residual % [1] T. Blumensath, M. E. Davies; "On the Difference Between Orthogonal
% Matching Pursuit and Orthogonal Least Squares", manuscript 2007 if nargin < 3
err = 1e-5;
end n1=length(y);
m=floor(3*n1/4); s = zeros(size(A,2),1);
r(:,1) = y; L = []; Psi = [];
normA=(sum(A.^2,1)).^0.5;
NI = 1:size(A,2); for i = 2:m+1
DR = A'*r(:,i-1);
[v, I] = max(abs(DR(NI))./normA(NI)');
INI = NI(I);
L = [L' INI']';
NI(I)=[];
Psi = A(:,L);
x = Psi\y;
yApprox = Psi*x;
r(:,i) = y - yApprox;
if norm(r(:,end)) < err
break;
end
end
s(L) = x;
residual = r(:,end);

参考文章

1、Blumensath T, Davies M E. On the difference between orthogonal matching pursuit and orthogonal least squares[J]. 2007.

2、Hashemi A, Vikalo H. Sparse Linear Regression via Generalized Orthogonal Least-Squares[J]. arXiv preprint arXiv:1602.06916, 2016.

欢迎python爱好者加入:学习交流群 667279387

压缩感知重构算法之OLS算法python实现的更多相关文章

  1. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  2. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  3. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  4. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  5. 压缩感知重构算法之OMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 浅谈压缩感知(三十一):压缩感知重构算法之定点连续法FPC

    主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函 ...

  7. 浅谈压缩感知(三十):压缩感知重构算法之L1最小二乘

    主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. ...

  8. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  9. 浅谈压缩感知(二十六):压缩感知重构算法之分段弱正交匹配追踪(SWOMP)

    主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段 ...

随机推荐

  1. 详解Spring Security的formLogin登录认证模式

    一.formLogin的应用场景 在本专栏之前的文章中,已经给大家介绍过Spring Security的HttpBasic模式,该模式比较简单,只是进行了通过携带Http的Header进行简单的登录验 ...

  2. 彻底搞懂 netty 线程模型

    编者注:Netty是Java领域有名的开源网络库,特点是高性能和高扩展性,因此很多流行的框架都是基于它来构建的,比如我们熟知的Dubbo.Rocketmq.Hadoop等.本文就netty线程模型展开 ...

  3. Comet OJ - 2019国庆欢乐赛 C题 两排房子

    ###题目链接### 题目大意:这里有横着的两排房子,给你每个房子的左端点和右端点.若两排房子中分别有两个房子 x y ,他们在横坐标上有重叠部分(端点重叠也算),则被称为 “对门” 关系. 问你总共 ...

  4. 分享使用PHP开发留言板

    首先我不是一名开发人员,只是一名小小的运维工程师,PHP是我自己喜欢的一门开发语言,所以我偶尔也会敲一些代码,写一些案例.今天我给大家分享的是使用PHP开发的留言板,留言板功能不全所以请大家见谅,也不 ...

  5. 2019CSP游记

    \(CSP2019\)游记 写在前面 考完,终于深刻地认识到省一似乎和我想象的真不是一个难度.也罢,不然为什么\(NOIP\)改了名还是这么有含金量. 考前一天和一群同学们嚷嚷着要去吃散伙饭,说没拿到 ...

  6. nyoj 71-独木舟上的旅行(贪心)

    71-独木舟上的旅行 内存限制:64MB 时间限制:3000ms 特判: No 通过数:10 提交数:15 难度:2 题目描述: 进行一次独木舟的旅行活动,独木舟可以在港口租到,并且之间没有区别.一条 ...

  7. Sequelize小记

    http://docs.sequelizejs.com/   官方英文 Object-Relational Mapping 增 Model.create({field1:'a', field2:'b' ...

  8. python:调用bash

    利用os模块 python调用Shell脚本,有三种方法: os.system(cmd)返回值是脚本的退出状态码 os.popen(cmd)返回值是脚本执行过程中的输出内容 commands.gets ...

  9. 使用C#+FFmpeg+DirectX+dxva2硬件解码播放h264流

    本文门槛较高,因此行文看起来会乱一些,如果你看到某处能会心一笑请马上联系我开始摆龙门阵 如果你跟随这篇文章实现了播放器,那你会得到一个高效率,低cpu占用(单路720p视频解码播放占用1%左右cpu) ...

  10. spring boot集成shiro-redis时,分布式根据seesionId获取session报错排查总结

    昨天在集成shiro-redis的时候,使用sessionId在其他微服务获取用户的session时,发生错误:There is no session with id [xxx]. 查遍了所有资料,基 ...