poj1037 [CEOI 2002]A decorative fence 题解
---恢复内容开始---
题意:
t组数据,每组数据给出n个木棒,长度由1到n,除了两端的木棒外,每一根木棒,要么比它左右的两根都长,要么比它左右的两根都短。即要求构成的排列为波浪型。对符合要求的排列按字典序(从左到右,从低到高)进行排序,求排列序号为c的排列。

刚拿到这道题时,也是一脸懵逼,感觉起来要用dp,但又不知道从哪里去下手。在网上搜了一下才大概明白。
我们可以先定义状态f[i]表示第i个木棒的合法方案数,我们考虑去转移,怎么从f[i-j]转移到f[i]呢?我们就要考虑第i-j个木棒的长度以及第i个木棒的长度关系,我们把下降的方案称为down,上升的称为up,我们将i根木棒构成的合法集合称为S(i)。
我们在选定x作为第一根木棒之后,去选择第二个木棒y,此时我们要去考虑x,y的长度关系,而在选定y之后我们又要考虑y和下一根木棒长度的关系,并且当方案不符合时我们也不便于去重新选择,此时我们的方程很难进行转移。
我们便可以考虑在此基础上进行细化f[i]=f[i][k] (k=1....i)
我们再定义状态f[i][j]表示集合S(i)中以第j短的木棒为第一个的方案数那么我们便可以写出状态转移方程
f[i][j]= \(\sum_{m=j}^p\) f[i][m] (down) + \(\sum_{n=1}^q\) f[i][n] (up) (p=i-1,q=j-1)
我们发现这个方程仍然不好转移,因为它还是没有拜托前面的约束。我们便可在问题上再进行细分
f[i][j]=f[i][j][down]+f[i][j][up]
f[i][j][[down]表示i根木棒以第j短的木棒为首的下降方案数,我们再去考虑状态转移方程
f[i[[j][down]= \(\sum_{n=1}^q\)f[i-1][n][up]
f[i[[j][up]= \(\sum_{m=j}^p\)f[i-1][m][down]
(p=i-1,q=j-1)
至此我们可以得出一个技巧,当在做dp类型的题目时,状态不好进行转移时我们可以在此基础上增加一维,如blocks,便于转移
至此问题还并没有得到解决,题目要求序列为c的方案,那么我们又改如何去求到呢?我们考虑以第1短的木棒为第一个的方案p(1),若c>p(1)则说明c不在p(1)之中,c减去p(1),我们再去考虑p(2),若还大于,则类推,当c<=p(k)时我们便可确定c在以第k短的木棒为第一根的集合内,我们再去考虑第二根,以此类推下去,求得解。
代码
#include<bits/stdc++.h>
using namespace std;
int T,n,used[25];
long long f[25][25][2],c;//0->up,1->down
void sta(int n){
memset(f,0,sizeof(f));
f[1][1][0]=f[1][1][1]=1;
for(int i=2;i<=n;++i){
for(int j=1;j<=i;++j){
for(int M=j;M<i;++M) f[i][j][0]+=f[i-1][M][1];
for(int N=1;N<j;++N) f[i][j][1]+=f[i-1][N][0];
}
}
}
void print(int n,long long cc){
long long jump=0;
int a[25];
memset(used,0,sizeof(used));
for(int i=1;i<=n;++i){
long long tmp=jump;
int k,p=0;
for(k=1;k<=n;++k){
tmp=jump;
if(!used[k]){
++p;
if(i==1) jump+=f[n][p][1]+f[n][p][0];
else{
if(k>a[i-1]&&(i<=2||a[i-2]>a[i-1])) jump+=f[n-i+1][p][1];
if(k<a[i-1]&&(i<=2||a[i-2]<a[i-1])) jump+=f[n-i+1][p][0];
}
if(jump>=cc) break;
}
}
used[k]=1;
a[i]=k;
jump=tmp;
}
for(int i=1;i<=n;++i){
printf("%d ",a[i]);
if(i==n) printf("\n");
}
}
int main(){
scanf("%d",&T);
sta(20);
while(T--){
scanf("%d %lld",&n,&c);
print(n,c);
}
return 0;
}
---恢复内容结束---
poj1037 [CEOI 2002]A decorative fence 题解的更多相关文章
- POJ1037 A decorative fence
题意 Language:Default A decorative fence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 84 ...
- POJ1037 A decorative fence 【动态规划】
A decorative fence Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6489 Accepted: 236 ...
- A decorative fence
A decorative fence 在\(1\sim n\)的全排列\(\{a_i\}\)中,只有大小交错的(即任意一个位置i满足\(a_{i-1}<a_i>a_{i+1}ora_{i- ...
- 【POJ1037】A decorative fence(DP)
BUPT2017 wintertraining(15) #6C 题意 给长度n的数列,1,2,..,n,按依次递增递减排序,求字典序第k小的排列. 题解 dp. up[i][j]表示长度为j,以第i小 ...
- $Poj1037\ A\ Decorative\ Fence$ 计数类$DP$
Poj AcWing Description Sol 这题很数位$DP$啊, 预处理$+$试填法 $F[i][j][k]$表示用$i$块长度不同的木板,当前木板(第$i$块)在这$i$块木板中从小到 ...
- poj 1037 A decorative fence
题目链接:http://poj.org/problem?id=1037 Description Richard just finished building his new house. Now th ...
- OpenJ_Bailian - 1037 A decorative fence
Discription Richard just finished building his new house. Now the only thing the house misses is a c ...
- usaco 2002 月赛 Fiber Communications 题解
Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...
- POJ1821 Fence 题解报告
传送门 1 题目描述 A team of $k (1 <= K <= 100) $workers should paint a fence which contains \(N (1 &l ...
随机推荐
- 数据结构-二叉搜索树和二叉树排序算法(python实现)
今天我们要介绍的是一种特殊的二叉树--二叉搜索树,同时我们也会讲到一种排序算法--二叉树排序算法.这两者之间有什么联系呢,我们一起来看一下吧. 开始之前呢,我们先来介绍一下如何创建一颗二叉搜索树. 假 ...
- Android 属性动画实战
什么是属性动画? 属性动画可以通过直接更改 View 的属性来实现 View 动画.例如: 通过不断的更改 View 的坐标来实现让 View 移动的效果: 通过不断的更改 View 的背景来实现让 ...
- ibatis 核心原理解析!
关注下方公众号,可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. 最近查找一个生产问题的原因,需要深入研究 ibatis 框架的源码.虽然最后证明问题的原因与 ibat ...
- python基础--基于套接字进行文件传输、异常处理、socketserver模块
异常处理: 什么是异常处理: 程序在运行过程中出现了不可预知的错误,并且该错误没有对应的处理机制,那么就会以异常的形式表现出来,造成的影响就是整个程序无法再正常运行 异常的结构: 异常的类型.异常的信 ...
- AVL树(查找、插入、删除)——C语言
AVL树 平衡二叉查找树(Self-balancing binary search tree)又被称为AVL树(AVL树是根据它的发明者G. M. Adelson-Velskii和E. M. Land ...
- Visual Studio 中两个窗体(WinForm)之间相互传值的方法
编写WinowsForm应用程序时,实现两个窗体之间相互传递值的方法其实很简单.以下用一个例子说明:在名为FormMain主窗体运行过程中利用名为FormInfo窗体,获取用户输入信息,并将这些信息返 ...
- Map集合的遍历.
package collction.map; import java.util.HashMap; import java.util.Iterator; import java.util.Map; im ...
- Django-用户-组-权限
前言 RBAC(Role-Based Access Control,基于角色的访问控制)就是用户通过角色与权限进行关联.简单地说,一个用户拥有若干角色,每一个角色拥有若干权限.这样,就构造成“用户-角 ...
- 「雕爷学编程」Arduino动手做(15)——手指侦测心跳模块
37款传感器和模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的.鉴于本人手头积累了一些传感器与模块,依照实践出真知(动手试试)的理念,以学习和交流为目的,这里准备 ...
- 快速了解Python并发编程的工程实现(下)
关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...