排序 (Ranking)

包点图 (Dot Plot)

包点图表传达了项目的排名顺序,并且由于它沿水平轴对齐,因此您可以更容易地看到点彼此之间的距离。

https://datawhalechina.github.io/pms50/#/chapter17/chapter17

导入所需要的库

import numpy as np              # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库

设定图像各种属性

large = 22; med = 16; small = 12

params = {'axes.titlesize': large,      # 设置子图上的标题字体
'legend.fontsize': med, # 设置图例的字体
'figure.figsize': (16, 10), # 设置图像的画布
'axes.labelsize': med, # 设置标签的字体
'xtick.labelsize': med, # 设置x轴上的标尺的字体
'ytick.labelsize': med, # 设置整个画布的标题字体
'figure.titlesize': large}
#plt.rcParams.update(params) # 更新默认属性
plt.style.use('seaborn-whitegrid') # 设定整体风格
sns.set_style("white") # 设定整体背景风格

程序代码

# step1:导入数据
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x:x.mean())
df.sort_values('cty', inplace = True) # 对'mpg_z这一列数据进行排序
df.reset_index(inplace = True) # 对排序后的数据重置索引 # step2: 绘制棒棒糖图
# 创建画布对象以及子图对象
fig,ax = plt.subplots(figsize = (16, 10), # 画布尺寸
facecolor = 'white', # 画布颜色
dpi = 80) # 分辨率
# 绘制柱状图
ax.hlines(y=df.index, # 纵坐标
xmin=11, # 柱状图在x轴的起点
xmax=26, # 柱状图在y轴的起点
color='gray', # 柱状图的颜色
alpha=0.7, # 透明度
linewidth=1, # 线宽
linestyles='dashdot') # 柱状图风格
# 绘制柱形图上的散点
ax.scatter(y=df.index, # 纵坐标
x=df.cty, # 横坐标
s=75, # 散点的尺寸
color='firebrick', # 颜色
alpha=0.7) # 透明度 # step3:装饰
# 设置标题、纵坐标的范围、横纵坐标的标题
ax.set_title('Dot Plot for Highway Mileage', # 设置标题以及字体大小
fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon') # 设置x轴标签
ax.set_yticks(df.index) # 设置y轴标尺刻度
ax.set_yticklabels(df.manufacturer.str.title(), # 刻度标尺的内容(所有单词都是以大写开始,其余字母均为小写)
fontdict={'horizontalalignment': 'right'}) # 相对于刻度标水平对齐,且设置字体尺寸
ax.set_xlim(10, 27) # 设置x轴范围
plt.show() # 显示图像

数据可视化实例(十七):包点图 (matplotlib,pandas)的更多相关文章

  1. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  2. 数据可视化实例(十四):面积图 (matplotlib,pandas)

    偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...

  3. 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)

    关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...

  4. seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化

    一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...

  5. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  6. 数据可视化实例(十一): 矩阵图(matplotlib,pandas)

    矩阵图 https://datawhalechina.github.io/pms50/#/chapter9/chapter9 导入所需要的库 import numpy as np # 导入numpy库 ...

  7. 数据可视化实例(九): 边缘箱形图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter7/chapter7 边缘箱形图 (Marginal Boxplot) 边缘箱图与边缘直方图具有相似的用 ...

  8. 数据可视化实例(七): 计数图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取 ...

  9. 数据可视化实例(八): 边缘直方图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter6/chapter6 边缘直方图 (Marginal Histogram) 边缘直方图具有沿 X 和 Y ...

随机推荐

  1. 第一个SpringMVC程序 (配置版)

    通过配置版本的MVC程序,可以了解到MVC的底层原理,实际开发我们用的是注解版的! 1.新建一个普通Maven的项目,然后添加web的支持 2.导入相关的SpringMVC的依赖 3.配置web.xm ...

  2. (七)Maven Profile 和 Filtering

    每个项目都会有多套运行环境(开发,测试,正式等等),不同的环境配置也不尽相同(如jdbc.url),借助Jenkins和自动部署提供的便利,我们可以把不同环境的配置文件单独抽离出来,打完包后用对应环境 ...

  3. Python按顺序读取文件夹中文件

    参考资料: https://blog.csdn.net/qq_22227123/article/details/79903116 https://blog.csdn.net/merdy_xi/arti ...

  4. Spring Boot入门系列(十八)整合mybatis,使用注解的方式实现增删改查

    之前介绍了Spring Boot 整合mybatis 使用xml配置的方式实现增删改查,还介绍了自定义mapper 实现复杂多表关联查询.虽然目前 mybatis 使用xml 配置的方式 已经极大减轻 ...

  5. WeChair项目Alpha冲刺(4/10)

    团队项目进行情况 1.昨日进展    Alpha冲刺第四天 昨日进展: 前端完成小程序登录态的定义 LoginController编写初步完成同时修改并更新了代码,但是在将编码好的项目部署到服务器上时 ...

  6. shell编程之系统环境变量

    点后面加上空格+配置文件等价于source 配置文件 常见的系统环境变量的配置 Bash_profile和.bashrc存在在家目录下,~表示家目录 [root@localhost home]# cd ...

  7. Spring mvc 面试

    Spring工作原理及其作用 1.springmvc请所有的请求都提交给DispatcherServlet,它会委托应用系统的其他模块负责负责对请求进行真正的处理工作. 2.DispatcherSer ...

  8. Python变量与基本数据类型

    Python变量与基本数据类型 前言 好了,从本章开始将正式进入Python的学习阶段.本章主要介绍的是Python变量与基本数据类型的认识,这些都是最基本的知识并且必须要牢靠掌握在心中. 注释 学习 ...

  9. Linux下9种优秀的代码比对工具推荐

    大家好,我是良许. 在我们编写代码的时候,我们经常需要知道两个文件之间,或者同一个文件不同版本之间有什么差异性.在 Windows 下有个很强大的工具叫作 BeyondCompare ,那在 Linu ...

  10. 平时Chrome中用的一些插件

    一.chrome://extensions Adblock Plus Dark Reader 让网站黑色主题 Infinity 新标签页 一个比较流行的新标签页工具 GNOME Shell integ ...