YOLO 算法是非常著名的目标检测算法。从其全称 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性:

  • Look Once: one-stage (one-shot object detectors) 算法,把目标检测的两个任务分类和定位一步完成。
  • Unified: 统一的架构,提供 end-to-end 的训练和预测。
  • Real-Time: 实时性,初代论文给出的指标 FPS 45 , mAP 63.4 。

YOLOv4: Optimal Speed and Accuracy of Object Detection ,于今年 4 月公布,采用了很多近些年 CNN 领域优秀的优化技巧。其平衡了精度与速度,目前在实时目标检测算法中精度是最高的。

论文地址:

源码地址:

本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Docker 编译使用。以及从 MS COCO 2017 数据集中怎么选出部分物体,训练出模型。

主要内容有:

  • 准备 Docker 镜像
  • 准备 COCO 数据集
  • 用预训练模型进行推断
  • 准备 COCO 数据子集
  • 训练自己的模型并推断
  • 参考内容

准备 Docker 镜像

首先,准备 Docker ,请见:Docker: Nvidia Driver, Nvidia Docker 推荐安装步骤

之后,开始准备镜像,从下到上的层级为:

nvidia/cuda

准备 Nvidia 基础 CUDA 镜像。这里我们选择 CUDA 10.2 ,不用最新 CUDA 11,因为现在 PyTorch 等都还都是 10.2 呢。

拉取镜像:

docker pull nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04

测试镜像:

$ docker run --gpus all nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04 nvidia-smi
Sun Aug 8 00:00:00 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 208... Off | 00000000:07:00.0 On | N/A |
| 0% 48C P8 14W / 300W | 340MiB / 11016MiB | 2% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce RTX 208... Off | 00000000:08:00.0 Off | N/A |
| 0% 45C P8 19W / 300W | 1MiB / 11019MiB | 0% Default |
+-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+

OpenCV

基于 nvidia/cuda 镜像,构建 OpenCV 的镜像:

cd docker/ubuntu18.04-cuda10.2/opencv4.4.0/

docker build \
-t joinaero/ubuntu18.04-cuda10.2:opencv4.4.0 \
--build-arg opencv_ver=4.4.0 \
--build-arg opencv_url=https://gitee.com/cubone/opencv.git \
--build-arg opencv_contrib_url=https://gitee.com/cubone/opencv_contrib.git \
.

其 Dockerfile 可见这里: https://github.com/ikuokuo/start-yolov4/blob/master/docker/ubuntu18.04-cuda10.2/opencv4.4.0/Dockerfile

Darknet

基于 OpenCV 镜像,构建 Darknet 镜像:

cd docker/ubuntu18.04-cuda10.2/opencv4.4.0/darknet/

docker build \
-t joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet \
.

其 Dockerfile 可见这里: https://github.com/ikuokuo/start-yolov4/blob/master/docker/ubuntu18.04-cuda10.2/opencv4.4.0/darknet/Dockerfile

上述镜像已上传 Docker Hub 。如果 Nvidia 驱动能够支持 CUDA 10.2 ,那可以直接拉取该镜像:

docker pull joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet

准备 COCO 数据集

MS COCO 2017 下载地址: http://cocodataset.org/#download

图像,包括:

标注,包括:

用预训练模型进行推断

预训练模型 yolov4.weights ,下载地址 https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights

运行镜像:

xhost +local:docker

docker run -it --gpus all \
-e DISPLAY \
-e QT_X11_NO_MITSHM=1 \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $HOME/.Xauthority:/root/.Xauthority \
--name darknet \
--mount type=bind,source=$HOME/Codes/devel/datasets/coco2017,target=/home/coco2017 \
--mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \
joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet

进行推断:

./darknet detector test cfg/coco.data cfg/yolov4.cfg /home/yolov4/yolov4.weights \
-thresh 0.25 -ext_output -show -out /home/coco2017/result.json \
/home/coco2017/test2017/000000000001.jpg

推断结果:

准备 COCO 数据子集

MS COCO 2017 数据集有 80 个物体标签。我们从中选取自己关注的物体,重组个子数据集。

首先,获取样例代码:

git clone https://github.com/ikuokuo/start-yolov4.git
  • scripts/coco2yolo.py: COCO 数据集转 YOLO 数据集的脚本
  • scripts/coco/label.py: COCO 数据集的物体标签有哪些
  • cfg/coco/coco.names: 编辑我们想要的那些物体标签

之后,准备数据集:

cd start-yolov4/
pip install -r scripts/requirements.txt export COCO_DIR=$HOME/Codes/devel/datasets/coco2017 # train
python scripts/coco2yolo.py \
--coco_img_dir $COCO_DIR/train2017/ \
--coco_ann_file $COCO_DIR/annotations/instances_train2017.json \
--yolo_names_file ./cfg/coco/coco.names \
--output_dir ~/yolov4/coco2017/ \
--output_name train2017 \
--output_img_prefix /home/yolov4/coco2017/train2017/ # valid
python scripts/coco2yolo.py \
--coco_img_dir $COCO_DIR/val2017/ \
--coco_ann_file $COCO_DIR/annotations/instances_val2017.json \
--yolo_names_file ./cfg/coco/coco.names \
--output_dir ~/yolov4/coco2017/ \
--output_name val2017 \
--output_img_prefix /home/yolov4/coco2017/val2017/

数据集,内容如下:

~/yolov4/coco2017/
├── train2017/
│ ├── 000000000071.jpg
│ ├── 000000000071.txt
│ ├── ...
│ ├── 000000581899.jpg
│ └── 000000581899.txt
├── train2017.txt
├── val2017/
│ ├── 000000001353.jpg
│ ├── 000000001353.txt
│ ├── ...
│ ├── 000000579818.jpg
│ └── 000000579818.txt
└── val2017.txt

训练自己的模型并推断

准备必要文件

  • cfg/coco/coco.names <cfg/coco/coco.names.bak has original 80 objects>

    • Edit: keep desired objects
  • cfg/coco/yolov4.cfg <cfg/coco/yolov4.cfg.bak is original file>

    • Download yolov4.cfg, then changed:
    • batch=64, subdivisions=32 <32 for 8-12 GB GPU-VRAM>
    • width=512, height=512 <any value multiple of 32>
    • classes=<your number of objects in each of 3 [yolo]-layers>
    • max_batches=<classes*2000, but not less than number of training images and not less than 6000>
    • steps=<max_batches*0.8, max_batches*0.9>
    • filters=<(classes+5)x3, in the 3 [convolutional] before each [yolo] layer>
    • filters=<(classes+9)x3, in the 3 [convolutional] before each [Gaussian_yolo] layer>
  • cfg/coco/coco.data

    • Edit: train, valid to YOLO datas
  • csdarknet53-omega.conv.105

    docker run -it --rm --gpus all \
    --mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \
    joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet ./darknet partial cfg/csdarknet53-omega.cfg /home/yolov4/csdarknet53-omega_final.weights /home/yolov4/csdarknet53-omega.conv.105 105

训练自己的模型

运行镜像:

cd start-yolov4/

xhost +local:docker

docker run -it --gpus all \
-e DISPLAY \
-e QT_X11_NO_MITSHM=1 \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $HOME/.Xauthority:/root/.Xauthority \
--name darknet \
--mount type=bind,source=$HOME/Codes/devel/models/yolov4,target=/home/yolov4 \
--mount type=bind,source=$HOME/yolov4/coco2017,target=/home/yolov4/coco2017 \
--mount type=bind,source=$PWD/cfg/coco,target=/home/cfg \
joinaero/ubuntu18.04-cuda10.2:opencv4.4.0-darknet

进行训练:

mkdir -p /home/yolov4/coco2017/backup

# Training command
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/csdarknet53-omega.conv.105 -map

中途可以中断训练,然后这样继续:

# Continue training
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_last.weights -map

yolov4_last.weights 每迭代 100 次,会被记录。

如果多 GPU 训练,可以在 1000 次迭代后,加参数 -gpus 0,1 ,再继续:

# How to train with multi-GPU
# 1. Train it first on 1 GPU for like 1000 iterations
# 2. Then stop and by using partially-trained model `/backup/yolov4_1000.weights` run training with multigpu
./darknet detector train /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_1000.weights -gpus 0,1 -map

训练过程,记录如下:

加参数 -map 后,上图会显示有红线 mAP

查看模型 mAP@IoU=50 精度:

$ ./darknet detector map /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_final.weights
...
Loading weights from /home/yolov4/coco2017/backup/yolov4_final.weights...
seen 64, trained: 384 K-images (6 Kilo-batches_64)
Done! Loaded 162 layers from weights-file calculation mAP (mean average precision)...
Detection layer: 139 - type = 27
Detection layer: 150 - type = 27
Detection layer: 161 - type = 27
160
detections_count = 745, unique_truth_count = 190
class_id = 0, name = train, ap = 80.61% (TP = 142, FP = 18) for conf_thresh = 0.25, precision = 0.89, recall = 0.75, F1-score = 0.81
for conf_thresh = 0.25, TP = 142, FP = 18, FN = 48, average IoU = 75.31 % IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.806070, or 80.61 %
Total Detection Time: 4 Seconds

进行推断:

./darknet detector test /home/cfg/coco.data /home/cfg/yolov4.cfg /home/yolov4/coco2017/backup/yolov4_final.weights \
-ext_output -show /home/yolov4/coco2017/val2017/000000006040.jpg

推断结果:

参考内容

结语

为什么用 Docker ? Docker 导出镜像,可简化环境部署。如 PyTorch 也都有镜像,可以直接上手使用。

关于 Darknet 还有什么? 下回介绍 Darknet 于 Ubuntu 编译,及使用 Python 接口 。

Let's go coding ~

YOLOv4: Darknet 如何于 Docker 编译,及训练 COCO 子集的更多相关文章

  1. YOLOv4: Darknet 如何于 Ubuntu 编译,及使用 Python 接口

    本文将介绍 YOLOv4 官方 Darknet 实现,如何于 Ubuntu 18.04 编译,及使用 Python 接口. 主要内容有: 准备基础环境: Nvidia Driver, CUDA, cu ...

  2. 矩池云上安装yolov4 darknet教程

    这里我是用PyTorch 1.8.1来安装的 拉取仓库 官方仓库 git clone https://github.com/AlexeyAB/darknet 镜像仓库 git clone https: ...

  3. 利用Docker编译Hadoop 3.1.0

    前言 为什么要使用Docker编译,请自行百度 操作系统环境:Centos 6.8 uname -r 内核版本:2.6.32-642.el6.x86_64 除非有把握否则不要在Centos6.8中直接 ...

  4. 使用 Docker 编译 OpenWRT(Widora)

    Docker 是一种新的被称之为容器的虚拟机.本文将使用此工具,进行 OpenWRT 的编译. 在 Docker 中下载 Ubuntu 14.04 的镜像 使用以下命令可以十分方便的从远程服务器上将 ...

  5. (原) ubuntu下用pycharm2016.1专业版配docker编译环境(docker Interpreter)

    一:先创建docker-machine 先创建docker machine.我主机上的虚拟机是virtualbox.$ docker-machine create --driver virtualbo ...

  6. docker 编译开发代码做镜像

    文件目录 Dockerfile 是docker制作镜像的文件,docker_run.sh是sh文件,gin_test是go编译之后的linux可执行程序,gintest.env是配置文件夹 首先写一个 ...

  7. Docker编译Android6.0源码

    docker环境配置 更正时区时间 # 查看当前时间 $ date # 修改当前时间 $ cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime ech ...

  8. 使用Docker编译OpenResty支持国密ssl加密

    编译环境 执行编译操作环境如下 #操作系统 CentOS Linux release 7.4.1708 (Core) #docker版本 Version: 19.03.5 编译过程 Dockerfil ...

  9. 编译原理实验 NFA子集法构造DFA,DFA的识别 c++11实现

    实验内容 将非确定性有限状态自动机通过子集法构造确定性有限状态自动机. 实验步骤 1,读入NFA状态.注意最后需要设置终止状态. 2,初始态取空,构造DFA的l0状态,将l0加入未标记状态队列que ...

随机推荐

  1. three.js 着色器材质之纹理

    今天郭先生说一说如何在three.js着色器中添加纹理,先看看今天要完成的效果,在线案例请点击博客原文. 这里我们分别引入三个纹理,分别是地球的表面纹理,对应的海拔灰度图,和云朵的纹理.使用表面纹理还 ...

  2. C#LeetCode刷题-拒绝采样

    拒绝采样篇 # 题名   通过率 难度 470 用 Rand7() 实现 Rand10()   34.4% 中等 478 在圆内随机生成点   22.8% 中等

  3. C#LeetCode刷题-排序

    排序篇 # 题名 刷题 通过率 难度 56 合并区间   31.2% 中等 57 插入区间   30.4% 困难 75 颜色分类   48.6% 中等 147 对链表进行插入排序   50.7% 中等 ...

  4. 【建议收藏】swoft的最佳实践

    这是一篇使用 swoft 两个月后的总结文章!,后续会陆续更新的 这是 web-api 开发的总结,如果使用 websocket 等服务的可能不适用,本章节会对一些规范.习惯,或者优化进行一些说明 一 ...

  5. 前端vue2-org-tree实现精美组织架构图

    最近遇到开发组织架构的需求,与以往开发的组织架构不同,不光要展示人名,还要显示职务(或者子公司名称).对应的头像等,并且要考虑,如果用户未上传头像,需使用默认头像(男.女.中性),(⊙o⊙)…要尊重尊 ...

  6. JDK1.8源码学习-String-hashCode方法为什么选择数字31作为乘子

    1. 背景 某天,我在写代码的时候,无意中点开了 String hashCode 方法.然后大致看了一下 hashCode 的实现,发现并不是很复杂.但是我从源码中发现了一个奇怪的数字,也就是本文的主 ...

  7. OpenStack 服务心跳机制和状态监控

    参考链接: OpenStack服务心跳机制和状态监控 https://blog.csdn.net/qqhappy8/article/details/79304221

  8. 10款人气暴涨的PHP开源工具

    若想创建动态而又新颖的Web应用程序,PHP便是理想的选择.不用说,在Web开发世界里,PHP是最流行的语言之一.一些非常好用的PHP开源工具着实拯救了不少开发任务繁重的PHP开发人员,减轻他们的开发 ...

  9. python123期末四题编程题 -无空隙回声输出-文件关键行数-字典翻转输出-《沉默的羔羊》之最多单词

    1. 无空隙回声输出 描述 获得用户输入,去掉其中全部空格,将其他字符按收入顺序打印输出. ‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬ ...

  10. 图解Janusgraph系列-分布式id生成策略分析

    JanusGraph - 分布式id的生成策略 大家好,我是洋仔,JanusGraph图解系列文章,实时更新~ 本次更新时间:2020-9-1 文章为作者跟踪源码和查看官方文档整理,如有任何问题,请联 ...