【CF772D】Varying Kibibits

题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数。如f(123,321)=121,f(530, 932, 81)=30。给你一个数集$T={a_1,a_2...a_n}$,定义函数G(x)

求$G(1)\oplus G(2)\oplus ...G(999999)$。

$1\le n \le 1000000,0\le a_i \le 999999$

题解:发现f函数就是10进制下的按位与,所以我们先对原序列进行fwt。具体地说,因为上面那个式子里有平方,所以我们要维护3个东西,a[i]表示T中i的个数,b[i]=a[i]*i,c[i]=a[i]*i*i。将这三个东西都进行fwt。

怎么统计呢?我们要求的就是一个集合的所有子集的元素的完全平方和。设当前的集合为U,我们考虑其中一个元素y的贡献,如果$S\subseteq U-y$,那么y会在$S+y$和$U-S$里分别被统计,也就是说其贡献是$y\times 2^{|U|-2}(b[U]+y)$。所以总的贡献就是$2^{|U|-2}(b[U]^2+c[U])$。特判:当a[U]=1时,贡献就是c[U];当a[U]=0时,贡献=0。

再逆fwt回去就好了。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
typedef long long ll;
const ll P=1000000007;
int n,len;
ll ans;
ll a[maxn],b[maxn],c[maxn],f[maxn],bt[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
inline void fwt()
{
int h,i;
for(h=1;h<len;h*=10)
{
for(i=len-1;~i;i--) if(i/h%10)
{
a[i-h]=(a[i-h]+a[i])%P;
b[i-h]=(b[i-h]+b[i])%P;
c[i-h]=(c[i-h]+c[i])%P;
}
}
}
inline void ufwt()
{
int h,i;
for(h=1;h<len;h*=10)
{
for(i=0;i<len;i++) if(i/h%10)
{
f[i-h]=(f[i-h]-f[i]+P)%P;
}
}
}
int main()
{
n=rd();
int i;
ll x;
for(i=1;i<=n;i++) x=rd(),a[x]++,b[x]=(b[x]+x)%P,c[x]=(c[x]+x*x)%P;
len=1000000;
fwt();
for(bt[0]=i=1;i<=n;i++) bt[i]=(bt[i-1]<<1)%P;
for(i=0;i<len;i++)
{
if(!a[i]) continue;
if(a[i]==1) f[i]=c[i];
else f[i]=bt[a[i]-2]*(b[i]*b[i]%P+c[i])%P;
}
ufwt();
for(i=0;i<len;i++) ans^=f[i]*i;
printf("%lld",ans);
return 0;
}

【CF772D】Varying Kibibits FWT的更多相关文章

  1. 【CSU1911】Card Game(FWT)

    [CSU1911]Card Game(FWT) 题面 vjudge 题目大意: 给定两个含有\(n\)个数的数组 每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\) ...

  2. 【题解】毒蛇越狱(FWT+容斥)

    [题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是 ...

  3. 【CF850E】Random Elections FWT

    [CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C ...

  4. 【XSY2753】Lcm 分治 FWT FFT 容斥

    题目描述 给你\(n,k\),要你选一些互不相同的正整数,满足这些数的\(lcm\)为\(n\),且这些数的和为\(k\)的倍数. 求选择的方案数.对\(232792561\)取模. \(n\leq ...

  5. 【bzoj4589】Hard Nim FWT+快速幂

    题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...

  6. 【learning】快速沃尔什变换FWT

    问题描述 已知\(A(x)\)和\(B(x)\),\(C[i]=\sum\limits_{j\otimes k=i}A[j]*B[k]\),求\(C\) 其中\(\otimes\)是三种位运算的其中一 ...

  7. 【bzoj4589】Hard Nim FWT

    题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走, ...

  8. 洛谷P4717 【模板】快速沃尔什变换(FWT)

    题意 题目链接 Sol 背板子背板子 #include<bits/stdc++.h> using namespace std; const int MAXN = (1 << 1 ...

  9. 【BZOJ4911】[SDOI2017]切树游戏(动态dp,FWT)

    [BZOJ4911][SDOI2017]切树游戏(动态dp,FWT) 题面 BZOJ 洛谷 LOJ 题解 首先考虑如何暴力\(dp\),设\(f[i][S]\)表示当前以\(i\)节点为根节点,联通子 ...

随机推荐

  1. [转]jmeter实战

    [转]http://blog.csdn.net/ultrani/article/details/8309932 本文主要介绍性能测试中的常用工具jmeter的使用方式,以方便开发人员在自测过程中就能自 ...

  2. vue如何加搜狗联盟广告

    搜狗联盟广告和百度联盟广告大同小异,但是好在百度联盟广告的使用方法网上还是可以找到一些,而搜狗联盟广告的教程网上几乎找不到,都是最基本的创建代码位的教程. 在vue中如果要加入搜狗联盟广告,就不能直接 ...

  3. Global.asax的Application_BeginRequest实现url重写无后缀的代码

    本文为大家详细介绍下利用Global.asax的Application_BeginRequest 实现url重写其无后缀,具体核心代码如下,有需求的朋友可以参考下,希望对大家有所帮助 利用Global ...

  4. git 强制刷新,放弃更改

    git fetch --all  git reset --hard origin/master

  5. Ubuntu中的“资源管理器”System Monitor

    我们在Windows中经常要查看“资源管理器”来了解系统运行情况,对进程进行操作等等... 在Windows桌面任务栏右键“启动任务管理器”: 学习Linux,自然也希望有类似的“资源管理器”,安装完 ...

  6. winform 打开一个窗体,关闭一个窗体

    例如  我要打开一个窗体b,关闭一个窗体a a中的代码添加: private void pictureBox5_Click(object sender, EventArgs e) { W_MainFo ...

  7. 5 -- Hibernate的基本用法 --4 1 创建Configuration对象

    org.hibernate.cfg.Configuration实例代表了应用程序到SQL数据库的配置信息,Configuration对象提供了一个buildSessionFactory()方法,该方法 ...

  8. PHP 5.4 中的traits

    PHP 5.4中的traits,是新引入的特性,中文还真不知道如何准确翻译好.其实际的目的,是为了有的场合想用多继承,但PHP又没多继承,于是就发明了这样的一个东西. Traits (横向重用/多重继 ...

  9. Objective-C语法之动态类型(isKindOfClass, isMemberOfClass,id)等

    对象在运行时获取其类型的能力称为内省.内省可以有多种方法实现. 判断对象类型 -(BOOL) isKindOfClass: classObj 判断是否是这个类或者这个类的子类的实例/ 判断是否是这个类 ...

  10. JSONP 劫持漏洞实例

    0x01 Jsonp简介 Jsonp(JSON with Padding) 是 json 的一种"使用模式",可以让网页从别的域名(网站)那获取资料,即跨域读取数据. 为什么我们从 ...