Tensorflow的slim框架可以写出像keras一样简单的代码来实现网络结构(虽然现在keras也已经集成在tf.contrib中了),而且models/slim提供了类似之前说过的object detection接口类似的image classification接口,可以很方便的进行fine-tuning利用自己的数据集训练自己所需的模型。

官方文档提供了比较详细的从数据准备,预训练模型的model zoo,fine-tuning,freeze model等一系列流程的步骤,但是缺少了inference的文档,不过tf所有模型的加载方式是通用的,所以调用方法和调用其他pb模型是一样的。

根据TF开发人员是说法Tensorflow对于模型读写的保存和调用的步骤一般如下:Build your graph --> write your graph --> import from written graph --> run compute etc

以下我们使用slim提供的网络inception-resnet-v2作为例子:

1. export inference graph

import tensorflow as tf
import nets.inception_resnet_v2 as net slim = tf.contrib.slim # checkpoint path
checkpoint_path = "/your/path/to/inception_resnet_v2.ckpt" # ckpt file obtained during model training or fine-tuning # set up and load session
sess = tf.Session()
arg_scope = net.inception_resnet_v2_arg_scope()
# initialize tensor suitable for model input
input_tensor = tf.placeholder(tf.float32, [None, 299, 299, 3])
with slim.arg_scope(arg_scope):
logits, end_points = net.inception_resnet_v2(inputs=input_tensor) # set up model saver
saver = tf.train.Saver()
saver.restore(sess, checkpoint_path)
with tf.gfile.GFile('/your/path/to/model_graph.pb', 'w') as f: # save model to given pb file
f.write(sess.graph_def.SerializeToString())
f.close()

2. freeze model

这里用tf提供的tensorflow/python/tools下的freeze_graph工具:

$ bazel build tensorflow/python/tools:freeze_graph
$ bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=/your/path/to/model_graph.pb \ # obtained above
--input_checkpoint=/your/path/to/inception_resnet_v2.ckpt \
--input_binary=true
--output_graph=/your/path/to/frozen_graph.pb \
--output_node_names=InceptionResnetV2/Logits/Predictions # output node name defined in inception resnet v2 net

(Optional) visualize frozen graph

LOG_DIR = ‘/tmp/graphdeflogdir’
model_filename = '/your/path/to/frozen_graph.pb' with tf.Session() as sess:
with tf.gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
graph = tf.import_graph_def(graph_def, name='')
writer = tf.summary.FileWriter(LOG_DIR, graph_def)
writer.close()

然后用tensorborad --logdir=LOG_DIR选择graph就可以查看到frozen后的网络结构。

3. inference

import cv2
import numpy as np def preprocess_inception(image_np, central_fraction=0.875):
image_height, image_width, image_channel = image_np.shape
if central_fraction:
bbox_start_h = int(image_height * (1 - central_fraction) / 2)
bbox_end_h = int(image_height - bbox_start_h)
bbox_start_w = int(image_width * (1 - central_fraction) / 2)
bbox_end_w = int(image_width - bbox_start_w)
image_np = image_np[bbox_start_h:bbox_end_h, bbox_start_w:bbox_end_w]
# normalize
image_np = 2 * (image_np / 255.) - 1
return image_np image_np = cv2.imread("test.jpg")
# preprocess image as inception resnet v2 does
image_np = preprcess_inception(image_np)
# resize to model input image size
image_np = cv2.resize(image_np, (299, 299))
# expand dims to shape [None, 299, 299, 3]
image_np = np.expand_dims(image_np, 0)
# load model
with tf.gfile.GFile('/your/path/to/frozen_graph.pb')
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
graph = tf.import_graph_def(graph_def, name='')
with tf.Session(graph=graph) as sess:
input tensor = sess.graph.get_tensor_by_name("input:0") # get input tensor
output_tensor = sess.graph.get_tensor_by_name("InceptionResnetV2/Logits/Predictions:0") # get output tensor
logits = sess.run(output_tensor, feed_dict={input_tensor: image_np})
print "Prediciton label index:", np.argmax(logits[0], 1)
print "Top 3 Prediciton label index:", np.argsort(logits[0], 3)

参考:

  1. https://stackoverflow.com/questions/42961243/using-pre-trained-inception-v4-model
  2. https://gist.github.com/cchadowitz-pf/f1c3e781c125813f9976f6e69c06fec2
  3. https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
  4. https://github.com/tensorflow/models/blob/master/slim/README.md
  5. https://gist.github.com/tokestermw/795cc1fd6d0c9069b20204cbd133e36b

Tensorflow 使用slim框架下的分类模型进行分类的更多相关文章

  1. Keras框架下的保存模型和加载模型

    在Keras框架下训练深度学习模型时,一般思路是在训练环境下训练出模型,然后拿训练好的模型(即保存模型相应信息的文件)到生产环境下去部署.在训练过程中我们可能会遇到以下情况: 需要运行很长时间的程序在 ...

  2. Windows下mnist数据集caffemodel分类模型训练及测试

    1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...

  3. TensorFlow(十八):从零开始训练图片分类模型

    (一):进入GitHub下载模型-->下载地址 因为我们需要slim模块,所以将包中的slim文件夹复制出来使用. (1):在slim中新建images文件夹存放图片集 (2):新建model文 ...

  4. 三分钟快速上手TensorFlow 2.0 (下)——模型的部署 、大规模训练、加速

    前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算 ...

  5. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

  6. 全面解析Pytorch框架下模型存储,加载以及冻结

    最近在做试验中遇到了一些深度网络模型加载以及存储的问题,因此整理了一份比较全面的在 PyTorch 框架下有关模型的问题.首先咱们先定义一个网络来进行后续的分析: 1.本文通用的网络模型 import ...

  7. tensorflow中slim模块api介绍

    tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686 ...

  8. tensorflow实现基于LSTM的文本分类方法

    tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实 ...

  9. Tensorflow object detection API 搭建物体识别模型(二)

    二.数据准备 1)下载图片 图片来源于ImageNet中的鲤鱼分类,下载地址:https://pan.baidu.com/s/1Ry0ywIXVInGxeHi3uu608g 提取码: wib3 在桌面 ...

随机推荐

  1. Unity3d脚本编程_

    UnityEngine.Component引入了新的成员,如下:                                                         新引入的成员     ...

  2. android:定制 ListView 的界面

    只能显示一段文本的 ListView 实在是太单调了,我们现在就来对 ListView 的界面进行 定制,让它可以显示更加丰富的内容. 首先需要准备好一组图片,分别对应上面提供的每一种水果,待会我们要 ...

  3. Window Server 2008 R2 TFS2010 安装前的准备

    前言 http://www.cnblogs.com/aehyok/p/3979707.html 这里简单介绍了安装windows Server 2008 R2系统,接下来就开始介绍安装Team Fou ...

  4. WHY数学表达式的3D可视化

    WHY数学表达式的3D可视化 很早之前我就有这种想法,将数学表达式的图形显示出来.最近终于实现了这套较为完善的版本,将其代码公布,也为开源做点贡献.首先系统中定义一套脚本语言格式,用于描述数学表达式. ...

  5. nodejs sass安装报错一招解决

    背景: 这个问题不是一天两天了,有时候是网速不行,有时候是被墙了,有时候是github把node-sass的包转移目录导致下载失败. Cannot download "https://git ...

  6. 【Yaml】Yaml学习笔记

    转载:https://blog.csdn.net/moshenglv/article/details/52084899 YAML何许物也?在XML泛滥的情况下,YAML的出现的确让人眼前一亮,在初步学 ...

  7. Spring.profiles多环境配置最佳实践

    转自:https://www.cnblogs.com/jason0529/p/6567373.html Spring的profiles机制,是应对多环境下面的一个解决方案,比较常见的是开发和测试环境的 ...

  8. SQL Server连接错误1326

    全新的SQL Server 2017,在2018年末才安装上,不过使用它来管理并不复杂的几张表,占用相对较多服务器资源,确实是有些大材小用. 无论如何,安装还是比较顺利.记得2012年第一次安装SQL ...

  9. grid - 初识

    Grid有三个参数 目前介绍以下两种:grid.inline-grid <view class="grid"> <view class='grid-row'> ...

  10. python实现模拟登录

    本文主要用python实现了对网站的模拟登录.通过自己构造post数据来用Python实现登录过程.   当你要模拟登录一个网站时,首先要搞清楚网站的登录处理细节(发了什么样的数据,给谁发等...). ...