hdu - 3049 - Data Processing(乘法逆元)
题意:N(N<=40000)个数n1, n2, ..., nN (ni<=N),求(2 ^ n1 + 2 ^ n2 + ... + 2 ^nN) / N % 1000003。
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3049
——>>RJ白书上说“因为‘乘法逆’太重要了……”,上一年南京区赛同学也碰到了求逆元……如今,学习了。。
什么是乘法逆?ab % m = 1 (这里的 a, b 分别都是模 m 的同余等价类),a 模 m 的乘法逆是 b,同一时候,b 模 m 的乘法逆是a。
乘法逆有什么用?这个用处可还真不小。。假设要求 a / b % m(保证 b | a),可是 a 非常大非常大,比方 a = 2 ^ 40000,这个式子可不等价于 (a % m) / (b % m) % m。。这时,乘法逆就能够上场了。。一个数除以 b 后模 m,等价于该数乘以 b 模 m 的乘法逆后模 m。。于是上式可变成 a * b的乘法逆 % m,这就easy多了,就是
(a % m) * (b的乘法逆 % m) % m。。
怎么求乘法逆?要求 a 模 m 的乘法逆,设其为 x,由于 a * x % m = 1,所以 a * x + m * y = 1。。这是什么,一元二次方程,于是乎,扩展欧几里得飞一下就出来了。。
#include <cstdio> typedef long long LL; const int MOD = 1000003;
const int MAXN = 40000 + 10; int N, kase;
LL sum;
int pow2[MAXN]; void GetPow2()
{
pow2[0] = 1;
for (int i = 1; i < MAXN; ++i)
{
pow2[i] = (pow2[i - 1] << 1) % MOD;
}
} void Read()
{
int n; sum = 0;
scanf("%d", &N);
for (int i = 0; i < N; ++i)
{
scanf("%d", &n);
sum = (sum + pow2[n]) % MOD;
}
} void gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if (!b)
{
d = a;
x = 1;
y = 0;
return;
}
else
{
gcd(b, a % b, d, y, x);
y -= a / b * x;
}
} LL Inv(int a, int n)
{
LL ret, d, y; gcd(a, n, d, ret, y); return d == 1 ? (ret + n) % n : -1;
} void Solve()
{
LL ret;
LL inv = Inv(N, MOD);
ret = sum * inv % MOD;
printf("Case %d:%I64d\n", ++kase, ret);
} int main()
{
int T; kase = 0;
GetPow2();
scanf("%d", &T);
while (T--)
{
Read();
Solve();
} return 0;
}
hdu - 3049 - Data Processing(乘法逆元)的更多相关文章
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- hdu 2669 Romantic (乘法逆元)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
- Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)
Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...
- HDU 4828 Grids(卡特兰数+乘法逆元)
首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
随机推荐
- 【十三】注入框架RoboGuice采用:(Logging via Ln)
上一篇我们简单的介绍了一下RoboGuice的使用([十二]注入框架RoboGuice使用:(Your First Injected ContentProvider)),今天我们来看下Log日志使用. ...
- redis内存管理代码的目光
zmalloc.h /* zmalloc - total amount of allocated memory aware version of malloc() * * Copyright (c) ...
- 第四章——SQLServer2008-2012资源及性能监控(2) .
原文:第四章--SQLServer2008-2012资源及性能监控(2) . 本文接着上文继续,讲述如何监控CPU的使用情况 前言: CPU是服务器中最重要的资源.在数据库服务器中,CPU的使用情况应 ...
- Android应用公布的准备——生成渠道包
我们须要使用一个变量标明该app的渠道.通常我们能够在manifest中的application节点下声明.例如以下. <meta-data android:name="CHANNEL ...
- Ping azure
最近azure在虚拟机上打开(欧式世纪互联),这其实并不能ping虚拟机! 查了一下资料,发现azure不支持被ping这个功能(貌似是不开放ICMP-in这个协议).有些用户跟客服问过这个问题,可是 ...
- 基于VMware的虚拟Linux集群搭建-lvs+keepalived
基于VMware的虚拟Linux集群搭建-lvs+keepalived 本文通过keepalived实现lvsserver的的双机热备和真实server之间的负载均衡.这方面的blog挺多,可是每一个 ...
- JavaScript的隐式转换
原文:JavaScript的隐式转换 JavaScript的数据类型分为六种,分别为null,undefined,boolean,string,number,object.object是引用类型,其它 ...
- Xcode的小标记旁边的文件的名称的作用
这两天老板教我要注意Xcode该文件名以小标记权.例如: 这里的M就是Xcode中类名旁边的一个symbol.还有A,D等,这些标记用于显示当前文件和代码仓库中该文件对照后的状态: M = Local ...
- [Unity3D]Unity3D圣骑士当游戏开发商遭遇Mecanim动画系统
大家好.我是秦培.欢迎关注我的博客.我的博客地址blog.csdn.net/qinyuanpei. 博主总算赶在这个月底写出了这篇文章.这个月由于期末考试一直没时间研究太多关于技术方面 ...
- 【 Android官方文件读书笔记】连接网络
一间连接应用网络的主要功能.Android系统对网络连接进行了封装,使得开发人员可以更快的给应用添加网络功能.大多数网络连接的Android应用使用HTTP发送和接受数据.Android包含两个HTT ...