评:如果不需要精确到3,上界的求法可以利用$$(1+\frac{1}{n})^n*\frac{1}{2}*\frac{1}{2}<(\frac{n+\frac{1}{n}*n+\frac{1}{2}*2}{n+2})^{n+2}=1$$显得更简单些

MT【23】用算术几何不等式证明数列极限存在的更多相关文章

  1. MT【19】舒尔不等式设计理念及证明

    评:舒尔的想法是美妙的,当然他本身也有很多意义,在机械化证明的理念里,它也占据了一方田地.

  2. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  3. MT【311】三角递推数列

    已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...

  4. MT【39】构造二次函数证明

    这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...

  5. MT【322】绝对值不等式

    已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...

  6. MT【72】一个不等式

    证明: 评: 可以思考$\frac{1}{(1+b)^2}+\frac{1}{(1+a)^2}$与$\frac{2}{(1+\sqrt{ab})^2}$大小.

  7. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  8. MT【25】切线不等式原理及例题

    评:切线不等式和琴生(Jesen)不等式都是有其几何意义的,在对称式中每一项单变量后利用图像的凹凸性得到一个线性的关系式.已知的条件往往就是线性条件,从而可以得到最值.

  9. schwarz( 施瓦兹)不等式证明

    证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2&l ...

随机推荐

  1. python 方法调用

    获取当前时间 today=time.strftime('%Y-%m-%d',time.localtime(time.time())) 取得时间相关的信息的话,要用到python time模块,pyth ...

  2. Luogu2467 SDOI2010 地精部落 DP

    传送门 一个与相对大小关系相关的$DP$ 设$f_{i,j,0/1}$表示放了$i$个,其中最后一个数字在$i$个中是第$j$大,且最后一个是极大值($1$)或极小值时($0$)的方案数.转移: $$ ...

  3. flask seesion组件

    一.简介     flask中session组件可分为内置的session组件还有第三方flask-session组件,内置的session组件功能单一,而第三方的flask-sessoin可支持re ...

  4. CQOI2018简要题解

    CQOI2018简要题解 D1T1 破解 D-H 协议 题意 Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信 ...

  5. 学习ML.NET(1): 构建流水线

    ML.NET使用LearningPipeline类定义执行期望的机器学习任务所需的步骤,让机器学习的流程变得直观. 下面用鸢尾花瓣预测快速入门的示例代码讲解流水线是如何工作的. using Micro ...

  6. [译]Kubernetes 分布式应用部署和人脸识别 app 实例

    原文地址:KUBERNETES DISTRIBUTED APPLICATION DEPLOYMENT WITH SAMPLE FACE RECOGNITION APP 原文作者:skarlso 译文出 ...

  7. Docker容器学习梳理 - SSH方式登陆容器

    前面几篇已经介绍了Docker基础环境的部署,下面介绍下通过ssh方式登陆Docker容器的操作记录(其实不太建议直接用ssh去连接上容器的想法,虽然可以,但是有很多弊端,而且docker已经提供了容 ...

  8. ecna2017-Game of Throwns

    这题就是给你一个标号为0-n-1的环,然后给你M个操作,操作有两种,一种是直接给一个数,这数的正负代表我当前向前(向后)仍了xx个位置的球,或者给你一个撤销操作表示为 undo m,表示撤销最近的M个 ...

  9. 3-palindrome CodeForces - 805B (思维)

    In the beginning of the new year Keivan decided to reverse his name. He doesn't like palindromes, so ...

  10. 在web.xml中配置监听器来控制ioc容器生命周期

    5.整合关键-在web.xml中配置监听器来控制ioc容器生命周期 原因: 1.配置的组件太多,需保障单实例 2.项目停止后,ioc容器也需要关掉,降低对内存资源的占用. 项目启动创建容器,项目停止销 ...