题目链接

题目

题目描述

lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示。当他使用某种装备时,他只能使用该装备的某一个属性。并且每种装备最多只能使用一次。

游戏进行到最后,lxhgww遇到了终极boss,这个终极boss很奇怪,攻击他的装备所使用的属性值必须从1开始连续递增地攻击,才能对boss产生伤害。也就是说一开始的时候,lxhgww只能使用某个属性值为1的装备攻击boss,然后只能使用某个属性值为2的装备攻击boss,然后只能使用某个属性值为3的装备攻击boss……以此类推。现在lxhgww想知道他最多能连续攻击boss多少次?

输入描述

输入的第一行是一个整数N,表示lxhgww拥有N种装备

接下来N行,是对这N种装备的描述,每行2个数字,表示第i种装备的2个属性值

输出描述

输出一行,包括1个数字,表示lxhgww最多能连续攻击的次数。

示例1

输入

3
1 2
3 2
4 5

输出

2

备注

对于 \(30\%\) 的数据,保证 \(N \leq 1000\)

对于 \(100\%\) 的数据,保证 \(N \leq 1000000\)

题解

方法一

知识点:图论,DFS。

把装备的两个属性值抽象成一条边的两个点,每条边只能选择一个点,那么对于一个连通图有大于等于点数量的边,那么这个连通图是存在环的,那就一定有方法使得所有点都选到,否则最大值不能选到。

于是,建图后枚举所有点的连通情况,如果存在环就是所有都能取到,如果不存在环则最大值取不到,将第一个不能取到的值设为最大值,如此遍历所有数字即可得到确定的第一个不能取到的数字,答案就是这个数字减一。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

方法二

知识点:并查集。

原理和方法一一样,将存在关系的点放入一个集合,根节点权值设为这个集合的最大值,如果存在两个点在一个集合后又被合并一次说明这个集合的点存在环,否则没有。

遍历所有集合找到不能取到最大值的集合中的最小值,减一即是答案。

时间复杂度 \(O(n)\)

空间复杂度 \(O(1)\)

方法三

知识点:贪心。

对于每个装备取较小属性值,如果这个值已经取过了那就取较大的属性值,将访问信息存入一个数组,如此得到一个最小能取到的属性值的数组,遍历数组直到第一个不能去到的数为止,减一即是答案。

时间复杂度 \(O(n)\)

空间复杂度 \(O(1)\)

代码

方法一

#include <bits/stdc++.h>

using namespace std;

vector<int> g[10007];
bool vis[10007];
int maxn;
bool dfs(int u, int fa) {
bool flag = false;///判断环
for (int i = 0;i < g[u].size();i++) {
int v = g[u][i];
if (fa == v) continue; ///和其他标记不一样,父节点单独考虑
if (vis[v]) { flag = true; continue; }///有环还不能跳出,要找到最大值
vis[v] = 1;///标记
maxn = max(maxn, v);///更新连通块最大值
if (dfs(v, u)) flag = true;///传递环信息
}
return flag;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
int ans = 0;
for (int i = 0;i < n;i++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
ans = max({ ans,u,v });
}
ans++;///表示不能到达的第一个数
for (int i = 1;i <= ans - 1;i++) {
if (!vis[i]) {
vis[i] = 1;
maxn = i;
if (!dfs(i, 0)) ans = min(ans, maxn);
}
///如果没访问,且所在连通块无环,则仅最大数一定不可达,更新为ans
///其他数如果之前的数都可达,则一定可达,因此访问过的不需要再次访问
}
cout << ans - 1 << '\n';///遍历区间后能确定ans
return 0;
}

方法二

#include <bits/stdc++.h>

using namespace std;

int fa[10007];
int maxn[10007];///维护连通块最大值
bool flag[10007];///维护环信息 int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
} void merge(int u, int v) {
int ru = find(u);
int rv = find(v);
if (ru == rv) flag[ru] = 1;
else {
fa[ru] = rv;
maxn[rv] = max(maxn[ru], maxn[rv]);
flag[rv] |= flag[ru];
}
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
for (int i = 1;i <= 10000;i++) fa[i] = i, maxn[i] = i;
int n;
cin >> n;
int ans = 0;
for (int i = 0;i < n;i++) {
int u, v;
cin >> u >> v;
merge(u, v);
ans = max({ ans,u,v });
}
ans++;
for (int i = 1;i <= ans - 1;i++) {
if (fa[i] == i && !flag[i]) ans = min(ans, maxn[i]);
}
cout << ans - 1 << '\n';
return 0;
}

方法三

#include <bits/stdc++.h>

using namespace std;

bool vis[10007];

int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 0;i < n;i++) {
int u, v;
cin >> u >> v;
if (!vis[min(u, v)]) vis[min(u, v)] = 1;
else vis[max(u, v)] = 1;
}
int ans = 1;
while (vis[ans]) {
ans++;
}
cout << ans - 1 << '\n';
return 0;
}

NC20566 [SCOI2010]游戏的更多相关文章

  1. BZOJ 1854: [Scoi2010]游戏 无向图判环

    题目链接: 题目 1854: [Scoi2010]游戏 Time Limit: 5 Sec Memory Limit: 162 MB 问题描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装 ...

  2. BZOJ 1854: [Scoi2010]游戏( 二分图最大匹配 )

    匈牙利算法..从1~10000依次找增广路, 找不到就停止, 输出答案. --------------------------------------------------------------- ...

  3. 1854: [Scoi2010]游戏

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2538  Solved: 905[Submit][Status] ...

  4. 【BZOJ】1854: [Scoi2010]游戏【二分图】

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 6759  Solved: 2812[Submit][Status] ...

  5. BZOJ 1854: [Scoi2010]游戏 并查集

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2672  Solved: 958[Submit][Status][ ...

  6. 【BZOJ1854】[Scoi2010]游戏 二分图最大匹配

    [BZOJ1854][Scoi2010]游戏 Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当 ...

  7. bzoj1854 [Scoi2010]游戏 ([SCOI2010]连续攻击游戏)

    bzoj1854 [Scoi2010]游戏 ([SCOI2010]连续攻击游戏) 据说正解是并查集???我不会 这不是一道匈♂牙利好题吗??? 一个装备的两个属性都向它连边,然后跑一遍匈♂牙利 注意: ...

  8. 1854: [Scoi2010]游戏[并查集]

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4938  Solved: 1948[Submit][Status] ...

  9. [BZOJ1854][SCOI2010]游戏 二分图最大匹

    1854: [Scoi2010]游戏 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 5316  Solved: 2128[Submit][Status] ...

随机推荐

  1. 记一次burp suite文件上传漏洞实验

    一·文件上传漏洞概念 文件上传漏洞是指 Web 服务器允许用户在没有充分验证文件名称.类型.内容或大小等内容的情况下将文件上传到其文件系统.未能正确执行这些限制可能意味着 即使是基本的图像上传功能也可 ...

  2. [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法

    \(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...

  3. 1.16 Linux该如何学习(新手入门必看)

    本节旨在介绍对于初学者如何学习 Linux 的建议.如果你已经确定对 Linux 产生了兴趣,那么接下来我们介绍一下学习 Linux 的方法. 如何去学习 学习大多类似庖丁解牛,对事物的认识一般都是由 ...

  4. spring boot 集成 rabbitmq 指南

    先决条件 rabbitmq server 安装参考 一个添加了 web 依赖的 spring boot 项目 我的版本是 2.5.2 添加 maven 依赖 <dependency> &l ...

  5. JS作用域与闭包

    JS作用域与闭包 在JavaScript中,作用域是可访问变量,对象,函数的集合. 变量分为全局变量和局部变量.全局变量在函数外定义,HTML中全局变量是window对象,所有数据对象都属于windo ...

  6. 零基础学Java第二节(运算符、输入、选择流程控制)

    本篇文章是<零基础学Java>专栏的第二篇文章,文章采用通俗易懂的文字.图示及代码实战,从零基础开始带大家走上高薪之路! 第一章 运算符 1.1 算术运算符的概述和用法 运算符 对常量和变 ...

  7. 859. Buddy Strings - LeetCode

    Question 859. Buddy Strings Solution 题目大意: 两个字符串,其中一个字符串任意两个字符互换后与另一个字符串相等,只能互换一次 思路: diff 记录不同字符数 两 ...

  8. JVM的类加载过程

    每日一句 人到情多情转薄,而今真个不多情. 每日一句 The frog in the well knows nothing of the great ocean. 井底之蛙,不知大海. JVM 的类加 ...

  9. 浅析kubernetes中client-go Informer

    之前了解了client-go中的架构设计,也就是 tools/cache 下面的一些概念,那么下面将对informer进行分析 Controller 在client-go informer架构中存在一 ...

  10. 一次生产环境的docker MySQL故障

    问题 昨天下午本来要去吃下午茶,然后前端小伙伴突然说接口怎么崩了,我登上sentry一看,报错了 (2005, "Unknown MySQL server host 'mysql' (-3) ...