【题解】毒蛇越狱(FWT+容斥)
【题解】毒蛇越狱(FWT+容斥)
问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难
用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后
- 枚举问号是01,裸的,\(O(2^{cnt[?]})\)
- 默认问号是1,利用子集和求,\(O(2^{cnt[1]})\)
- 默认问号是0,利用超集和求,\(O(2^{cnt[0]})\)
可以知道\(min(cnt)\le n/3\),所以复杂度\(O(n2^n 2^{n/3}Q)\)
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c)) f|=c==45,c=getchar();
while( isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1<<20|1;
char s[maxn];
int data[maxn],c[maxn],s0[maxn],s1[maxn],n,q;
int cnt[3];
inline void FWT_AND(int*a,const int&len,const int&tag){
for(int t=1;t<len;t<<=1)
for(int i=0;i<len;i+=t<<1)
for(int k=0;k<t;++k)
a[i+k]+=a[t+i+k]*tag;
}
inline void FWT_OR(int*a,const int&len,const int&tag){
for(int t=1;t<len;t<<=1)
for(int i=0;i<len;i+=t<<1)
for(int k=0;k<t;++k)
a[t+i+k]+=a[i+k]*tag;
}
int num[maxn],u;
int main(){
n=qr(); q=qr();
u=(1<<n)-1;
scanf("%s",s);
for(int t=1;t<1<<n;++t) num[t]=num[t^(t&-t)]+1;
for(int t=0;t<1<<n;++t) data[t]=s[t]-48,s0[t]=data[t],s1[t]=data[t];
FWT_AND(s0,1<<n,1); FWT_OR(s1,1<<n,1);
while(q--){
if(scanf("%s",s)==EOF) return 0;
memset(cnt,0,sizeof cnt);
for(int t=0;t<n;++t){
if(isdigit(s[t])) c[t]=s[t]==49;
else c[t]=2;
++cnt[c[t]];
}
int base=0,wen=0,ans=0,k=min({cnt[0],cnt[1],cnt[2]});
for(int t=0;t<n;++t)
if(c[t]<=1) base=base<<1|c[t],wen<<=1;
else wen=wen<<1|1,base<<=1;
if(cnt[2]==k){
for(int t=wen;~t;--t>=0?t&=wen:t)
ans+=data[t|base];
}else if(cnt[1]==k){
for(int t=base;~t;--t>=0?t&=base:t){
int g=t|wen;
if(num[base^t]&1) ans-=s1[g];
else ans+=s1[g];
}
}else{
base^=u; base^=wen;
for(int t=base;~t;--t>=0?t&=base:t){
int g=t|wen;
if(num[base^t]&1) ans-=s0[g^u];
else ans+=s0[g^u];
}
}
printf("%d\n",ans);
}
return 0;
}
【题解】毒蛇越狱(FWT+容斥)的更多相关文章
- 【题解】Counting D-sets(容斥+欧拉定理)
[题解]Counting D-sets(容斥+欧拉定理) 没时间写先咕咕咕. vjCodeChef - CNTDSETS 就是容斥,只是难了一二三四五\(\dots \inf\)点 题目大意: 给定你 ...
- BZOJ 1008--[HNOI2008]越狱(容斥&快速幂)
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 12593 Solved: 5439[Submit][Status ...
- CF 449D 题解(状压+容斥)
状压妙啊... 本题的主体思路:状压+容斥原理(或状压+数位dp) 记g[i]表示按位与后结果所有位上至少有i个1的方案数 那么根据容斥原理,ans=g[0]-g[1]+g[2]-g[3]+g[4]. ...
- How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...
- kth min_max容斥
题解: 普通的$min-max$容斥是用来求最后出现元素的期望之类的 $kth min-max$容斥进一步解决倒数第k个出现的元素的期望 给出公式: $kthmax(S)=\sum\limits_{T ...
- 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)
[CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)
[BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
随机推荐
- This cache store does not support tagging.
用户权限管理系统 https://github.com/Zizaco/entrust 再添加角色的时候... 报了一个错.. BadMethodCallException in Repository. ...
- oracle函数 sysdate
[功能]:返回当前日期. [参数]:没有参数,没有括号 [返回]:日期 [示例]select sysdate hz from dual; 返回:2008-11-5
- JavaScript指定周期来调用函数setTimeout和setInterval
setTimeout方法:setTimeout setInterval方法:setInterval
- [ Laravel 5.6 文档 ] 安全系列 —— 重置密码
http://laravelacademy.org/post/8929.html 简介 想要快速实现该功能?只需要在新安装的 Laravel 应用下运行 php artisan make:auth(如 ...
- JAVA之NIO按行读写大文件,完美解决中文乱码问题
;//一次读取的字节长度 File fin = new File("D:\\test\\20160622_627975.txt");//读取的文件 File fout = new ...
- HBuider快捷键
朋友推荐用Hbuilder编辑器,看了下Hbuilder官网和那视频,感觉牛逼哄哄的, 自己也就体验了一下,打开Hbuilder的快捷键列表,每个快捷键都体验了一下,以下展示出来的,每一个都是精华,每 ...
- Python--day70--csrf简单用法、 跨站请求伪造和csrf_token使用
1,csrf简单用法 2,Django里面的setting加入了防跨站伪造:这段代码帮你生成特殊字符串,帮你塞到html页面中来 3,csrf_token使用:
- css模仿ipad的日历
https://www.cnblogs.com/sandraryan/ 题外话之:最近的练习用js之类的写起来会简单点,但是为了巩固基础,只好html和css硬怼页面X﹏X 这是一个日历的代码 注释有 ...
- Yarn install 报错 Resolving packages... [2/4] Fetching packages... info There appears to be trouble with your network connection. Retrying
1.设置淘宝代理 yarn config set registry 'https://registry.npm.taobao.org' 2.如果网址本地可以打开,说明你本地有代理设置 所以需要按本地的 ...
- [转]Spring 注解大全与详解
Spring使用的注解大全和解释 注解 解释 @Controller 组合注解(组合了@Component注解),应用在MVC层(控制层),DispatcherServlet会自动扫描注解了此注解的类 ...