将棋盘黑白染色,即构成一张二分图

将状态用一张二分图$G$和一个点$x\in V$描述(分别为仍未被经过的点的导出子图和当前棋子所在位置),并称将要移动棋子的一方为先手

结论:先手必胜当且仅当$x$一定在$G$的最大匹配中

对该结论归纳,显然$|V|\le 2$时显然成立

若$|V|<n$时成立,考虑$|V|=n$时——

若$x$一定在最大匹配中,先手任选一组最大匹配并将棋子移动到匹配的点

注意到将新图(指删去$x$后)的最大匹配数恰比原图少1(否则即存在最大匹配不包含$x$),因此先手所选的最大匹配去掉$x$所在的匹配后也为新图的最大匹配

其并不包含棋子所在的点,根据归纳假设即先手必胜

若$x$不一定在最大匹配中,那么新图的最大匹配数和原图相同

注意到如果新图的最大匹配不包含某个与$x$相邻的点,那么原图的最大匹配就可以在此基础上增加$x$和该点的匹配,即与两者最大匹配数相同矛盾

因此,所有与$x$相邻的点都一定在新图的最大匹配中,根据归纳假设即先手必败

综上,即得证

由此,对其先任求一组最大匹配,不在匹配中的点即一定在答案中,对匹配中的点再对其所匹配的寻找增广路来判断是否一定在最大匹配中

时间复杂度为$o(n^{2}m^{2})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 struct Edge{
5 int nex,to;
6 }edge[N*N*4];
7 int n,m,V,E,tot,id[N][N],head[N*N],vis[N*N],match[N*N],ans[N*N];
8 char s[N][N];
9 void add(int x,int y){
10 edge[E].nex=head[x];
11 edge[E].to=y;
12 head[x]=E++;
13 }
14 bool dfs(int k){
15 if (vis[k])return 0;
16 vis[k]=1;
17 for(int i=head[k];i!=-1;i=edge[i].nex)
18 if ((!match[edge[i].to])||(dfs(match[edge[i].to]))){
19 match[k]=edge[i].to;
20 match[edge[i].to]=k;
21 return 1;
22 }
23 return 0;
24 }
25 int main(){
26 scanf("%d%d",&n,&m);
27 for(int i=0;i<n;i++){
28 scanf("%s",s[i]);
29 for(int j=0;j<m;j++)
30 if (s[i][j]!='#')id[i][j]=++V;
31 }
32 memset(head,-1,sizeof(head));
33 for(int i=0;i<n;i++)
34 for(int j=0;j<m;j++)
35 if (id[i][j]){
36 if ((i)&&(id[i-1][j])){
37 add(id[i][j],id[i-1][j]);
38 add(id[i-1][j],id[i][j]);
39 }
40 if ((j)&&(id[i][j-1])){
41 add(id[i][j],id[i][j-1]);
42 add(id[i][j-1],id[i][j]);
43 }
44 }
45 for(int i=1;i<=V;i++)
46 if (!match[i]){
47 memset(vis,0,sizeof(vis));
48 dfs(i);
49 }
50 for(int i=1;i<=V;i++)
51 if (!match[i])ans[i]=1;
52 else{
53 memset(vis,0,sizeof(vis));
54 ans[i]=dfs(match[i]);
55 if (ans[i])match[i]=0;
56 }
57 for(int i=0;i<n;i++)
58 for(int j=0;j<m;j++)
59 if ((id[i][j])&&(ans[id[i][j]]))tot++;
60 printf("%d\n",tot);
61 for(int i=0;i<n;i++)
62 for(int j=0;j<m;j++)
63 if ((id[i][j])&&(ans[id[i][j]]))printf("%d %d\n",i+1,j+1);
64 }

[loj6033]棋盘游戏的更多相关文章

  1. [LOJ6029~6052]雅礼集训 2017 选做

    Link 代码可以在loj上看我的提交记录. Day 1 [LOJ6029]市场 对于一次除法操作,若区间内所有数的减少量均相同则可视作区间减法,否则暴力递归下去.显然一个线段树节点只会被暴力递归进去 ...

  2. LOJ6033「雅礼集训 2017 Day2」棋盘游戏 (博弈论,二分图,匈牙利算法)

    什么神仙思路啊-- 看到棋盘就去想二分图.(smg啊)(其实是校内模拟赛有基本一样的题,只不过直接给了个二分图) 看到二分图就去想最大匹配.(我怎么想偶环的性质去了) (以下内容摘自这里) 这个二分图 ...

  3. HD1281棋盘游戏(匹配+好题)

    棋盘游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  4. hdu------1281 棋盘游戏(最小覆盖点)

    棋盘游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. hdu 1281 棋盘游戏

    http://acm.hdu.edu.cn/showproblem.php?pid=1281 棋盘游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  6. 洛谷P1117 棋盘游戏

    洛谷1117 棋盘游戏 题目描述 在一个4*4的棋盘上有8个黑棋和8个白棋,当且仅当两个格子有公共边,这两个格子上的棋是相邻的.移动棋子的规则是交换相邻两个棋子.现在给出一个初始棋盘和一个最终棋盘,要 ...

  7. UESTC_棋盘游戏 CDOJ 578

    最近昀昀学习到了一种新的棋盘游戏,这是一个在一个N×N的格子棋盘上去搞M个棋子的游戏,游戏的规则有下列几条: 棋盘上有且仅有一个出口 开始时没有哪个棋子在出口,而且所有棋子都不相邻(这里的相邻是指上下 ...

  8. Loj #2731 「JOISC 2016 Day 1」棋盘游戏

    Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...

  9. Hdu1281 棋盘游戏

    棋盘游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

随机推荐

  1. 找出某名珍贵药材的生长区域(ArcPy实现)

    一.背景 某种珍贵药材生长于山区,通过研究了解到这种药材生长具有严格的生长条件.为了能更好地保护该药材的生长环境,现在需要使用GIS空间分析方法,将药材适合生长区域找出来,以便为该物种保护提供依据. ...

  2. 题解 [ZJOI2016]大森林

    题目传送门 Description 现在有 \(n\) 棵以 \(1\) 为根的树,每棵树有一个生长节点,有 \(m\) 次操作,每次操作是下面三种中的一个: 在 \(l\sim r\) 的这些树的生 ...

  3. Java中的函数式编程(二)函数式接口Functional Interface

    写在前面 前面说过,判断一门语言是否支持函数式编程,一个重要的判断标准就是:它是否将函数看做是"第一等公民(first-class citizens)".函数是"第一等公 ...

  4. Windows系统安装Java步骤

    今天学习到Burp Suite的使用,提示到安装Burp Suite需要安装Java环境. 于是乎,本弱鸡开启了漫长的Java环境安装之路~ 一.Java SE版本众多,在这里推荐下载Java1.8版 ...

  5. Github 29K Star的开源对象存储方案——Minio入门宝典

    对象存储不是什么新技术了,但是从来都没有被替代掉.为什么?在这个大数据发展迅速地时代,数据已经不单单是简单的文本数据了,每天有大量的图片,视频数据产生,在短视频火爆的今天,这个数量还在增加.有数据表明 ...

  6. 如何知道当前使用的python的安装路径

    电脑里多处安装了python,那么如何得知当前使用python的安装路径呢? 方法一 运行python指令: import sys print(sys.executable) 方法二 对于终端和Win ...

  7. Java集合 - 集合知识点总结概述

    集合概述 概念:对象的容器,定义了对多个对象进项操作的的常用方法.可实现数组的功能. 和数组的区别: 数组长度固定,集合长度不固定. 数组可以存储基本类型和引用类型,集合只能存储引用类型. 位置: j ...

  8. LeetCode:链表专题

    链表专题 参考了力扣加加对与链表专题的讲解,刷了些 leetcode 题,在此做一些记录,不然没几天就没印象了 出处:力扣加加-链表专题 总结 leetcode 中对于链表的定义 // 定义方式1: ...

  9. MySQL:基础语法-3

    MySQL:基础语法-3 记录一下 MySQL 基础的一些语法,便于查询,该部分内容主要是参考:bilibili 上 黑马程序员 的课程而做的笔记,由于时间有点久了,课程地址忘记了 上文MySQL:基 ...

  10. shell调用另一个脚本的三种方式fork/exec/source

    exec和source都属于bash内部命令(builtins commands),在bash下输入man exec或man source可以查看所有的内部命令信息. bash shell的命令分为两 ...