SLAM图优化g2o
SLAM图优化g2o
图优化g2o框架
图优化的英文是 graph optimization 或者 graph-based optimization, “图”其实是数据结构中的graph。凸优化的英文是 convex optimization,这里的“凸”其实是凸函数的意思,所以单从英文就能区分开。
图优化有什么优势?
SLAM的后端一般分为两种处理方法,一种是以扩展卡尔曼滤波(EKF)为代表的滤波方法,一种是以图优化为代表的非线性优化方法。SLAM研究的主流热点几乎都是基于图优化。
滤波方法尤其是EKF方法,在SLAM发展很长的一段历史中一直占据主导地位,早期的大神们研究了各种各样的滤波器来改善滤波效果,SLAM,EKF是必须要掌握的。滤波方法的优缺点:
优点:在计算资源受限、待估计量比较简单的情况下,EKF为代表的滤波方法比较有效,经常用在激光SLAM中。
缺点:存储量和状态量是平方增长关系,存储的是协方差矩阵,不适合大型场景。基于视觉的SLAM方案,路标点(特征点)数据很大,滤波方法根本吃不消,所以此时滤波的方法效率非常低。
图优化在视觉SLAM中效率很高吗?
以前都是用滤波方法,因为在图优化里,Bundle Adjustment(后面简称BA)起到了核心作用。大量特征点和相机位姿的BA计算量其实很大,根本没办法实时。
在视觉SLAM中,虽然包含大量特征点和相机位姿,其实BA是稀疏的,稀疏的就好办了,就可以加速了啊!比较代表性的就是2009年,几个大神发表了自己的研究成果《SBA:A software package for generic sparse bundle adjustment》,而且计算机硬件发展也很快,因此基于图优化的视觉SLAM也可以实时了!
图优化是什么?
图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成。
比如一个机器人在房屋里移动,在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。
在SLAM里,图优化一般分解为两个任务:
1、构建图。机器人位姿作为顶点,位姿间关系作为边。
2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。
根据机器人位姿来作为图的顶点,这个位姿可以来自机器人的编码器,也可以是ICP匹配得到的,图的边就是位姿之间的关系。由于误差的存在,实际上机器人建立的地图是不准的,如下图左。通过设置边的约束,使得图优化向着满足边约束的方向优化,最后得到了一个优化后的地图(如下图中所示),与真正的地图(下图右)非常接近。

g2o 框架
图优化如何编程实现呢?
在SLAM领域,基于图优化的一个用的非常广泛的库就是g2o,是General Graphic Optimization 的简称,是一个用来优化非线性误差函数的c++框架。
这个g2o怎么用呢?
先安装,其实g2o安装很简单,参考GitHub上官网:
https://github.com/RainerKuemmerle/g2o
按照步骤来安装就行了。需要注意的是安装之前确保电脑上已经安装好了第三方依赖。
第一次接触g2o,确实有这种感觉,而且官网文档写的也比较“不通俗不易懂”,不过如果理顺了框架,再去看代码,应该很快能够入手了。
g2o实现了很多内部的算法,在进行构造的时候,需要遵循一些规则,毕竟一个程序不可能满足所有的要求,g2o的使用中还是应该多看多记,这样才能更好的使用这个库。
首先看一下下面这个图,是g2o的基本框架结构。看图的时候要注意箭头类型。

1、图的核心
要知道这个图中哪个最重要,就去看看箭头源头在哪里
最左侧的SparseOptimizer?SparseOptimizer是整个图的核心,右上角的 is-a 实心箭头,这个SparseOptimizer是一个Optimizable Graph,从而也是一个超图(HyperGraph)。
2、顶点和边
先来看上面的结构。has-many 箭头,这个超图包含了许多顶点(HyperGraph::Vertex)和边(HyperGraph::Edge)。而这些顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)或BaseMultiEdge(多边),都称为OptimizableGraph::Edge
顶点和边在编程中很重要的,看底部的结构。
3、配置SparseOptimizer的优化算法和求解器
整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell's dogleg 三者中间选择一个(常用的是GN和LM)
GN和LM就是非线性优化方法中常用的两种。
4、如何求解
OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod,上面图的一个简单理解。
g2o编程流程
从底层开始搭建框架一直到顶层。g2o的整个框架就是按照下图中标的这个顺序来写的。

SLAM十四讲中g2o求解曲线参数的例子来说明,源代码地址
https://github.com/gaoxiang12/slambook/edit/master/ch6/g2o_curve_fitting/main.cpp
为了方便理解,重新加了注释。如下所示,
typedefg2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;// 每个误差项优化变量维度为3,误差值维度为1
// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver =newg2o::LinearSolverDense<Block::PoseMatrixType>();
// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr =newBlock( linearSolver );
// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver =newg2o::OptimizationAlgorithmLevenberg( solver_ptr );
// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer;// 图模型
optimizer.setAlgorithm( solver );// 设置求解器
optimizer.setVerbose(true);// 打开调试输出
// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v =newCurveFittingVertex();//往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for(inti=0; i<N; i++ )// 往图中增加边
{
CurveFittingEdge* edge =newCurveFittingEdge( x_data[i] );
edge->setId(i);
edge->setVertex(0, v );// 设置连接的顶点
edge->setMeasurement( y_data[i] );// 观测数值
edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) );// 信息矩阵:协方差矩阵之逆
optimizer.addEdge( edge );
}
// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);
结合上面的流程图和代码。下面一步步解释具体步骤。
1、创建一个线性求解器LinearSolver
增量方程的形式是:H△X=-b,通常的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。
需要一些特殊的方法对矩阵进行求逆,看下图是GitHub上g2o相关部分的代码

可以分别查看每个方法的解释。
LinearSolverCholmod:使用sparse cholesky分解法。继承自LinearSolverCCS
LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
LinearSolverPCG:使用preconditioned conjugate gradient 法,继承自LinearSolver
LinearSolverDense:使用dense cholesky分解法。继承自LinearSolver
LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver
2、创建BlockSolver。并用上面定义的线性求解器初始化。
BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。它的定义在如下文件夹内:
BlockSolver有两种定义方式
一种是指定的固定变量的solver,定义
usingBlockSolverPL = BlockSolver< BlockSolverTraits<p, l> >;
其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度
另一种是可变尺寸的solver,定义如下
using BlockSolverX = BlockSolverPL<Eigen::Dynamic, Eigen::Dynamic>;
为何会有可变尺寸的solver呢?
这是因为在某些应用场景, Pose和Landmark在程序开始时并不能确定,此时这个块状求解器就没办法固定变量,此时使用这个可变尺寸的solver,所有的参数都在中间过程中被确定
看block_solver.h的最后,预定义了比较常用的几种类型,如下所示:
BlockSolver_6_3:表示pose 是6维,观测点是3维。用于3D SLAM中的BA
BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
BlockSolver_3_2:表示pose 是3维,观测点是2维
以后遇到了知道这些数字是什么意思就行了
3、创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o/g2o/core/ 目录下, Solver的优化方法有三种:分别是高斯牛顿(GaussNewton)法,LM(Levenberg–Marquardt)法、Dogleg法,如下图所示,也和前面的图相匹配

上图最后那个OptimizationAlgorithmWithHessian 是干嘛的?
GN、 LM、 Doglet算法内部,都继承自同一个类:OptimizationWithHessian,如下图所示,这也和最前面那个图是相符。

看 OptimizationAlgorithmWithHessian,继承自OptimizationAlgorithm,这也和前面的相符。

总之,在该阶段,可以选三种方法:
g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg
g2o::OptimizationAlgorithmDogleg
4、创建终极大boss 稀疏优化器(SparseOptimizer),用已定义求解器作为求解方法。
创建稀疏优化器
g2o::SparseOptimizer optimizer;
用前面定义好的求解器作为求解方法:
SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)
其中setVerbose是设置优化过程输出信息用的
SparseOptimizer::setVerbose(boolverbose)
看一下定义

5、定义图的顶点和边。并添加到SparseOptimizer中。
这部分比较复杂,不展开介绍。
6、设置优化参数,开始执行优化。
设置SparseOptimizer的初始化、迭代次数、保存结果等。
初始化
SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)
设置迭代次数,然后就开始执行图优化了。
SparseOptimizer::optimize(intiterations,boolonline)
SLAM图优化g2o的更多相关文章
- 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码
首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...
- 视觉SLAM漫淡(二):图优化理论与g2o的使用
视觉SLAM漫谈(二):图优化理论与g2o的使用 1 前言以及回顾 各位朋友,自从上一篇<视觉SLAM漫谈>写成以来已经有一段时间了.我收到几位热心读者的邮件.有的希望我介绍一下当前 ...
- 深入理解图优化与g2o:图优化篇
前言 本节我们将深入介绍视觉slam中的主流优化方法——图优化(graph-based optimization).下一节中,介绍一下非常流行的图优化库:g2o. 关于g2o,我13年写过一个文档,然 ...
- g2o:一种图优化的C++框架
转载自 Taylor Guo g2o: A general framework for graph optimization 原文发表于IEEE InternationalConference on ...
- 深入理解图优化与g2o:g2o篇
内容提要 讲完了优化的基本知识,我们来看一下g2o的结构.本篇将讨论g2o的代码结构,并带着大家一起写一个简单的双视图bundle adjustment:从两张图像中估计相机运动和特征点位置.你可以把 ...
- Ubuntu16.04安装视觉SLAM环境(g2o)
1.首先在github上下载g2o图优化库 git clone https://github.com/RainerKuemmerle/g2o.git 2.运行安装以下依赖库 sudo apt-get ...
- CF 291E. Tree-String Problem [dfs kmp trie图优化]
CF291E 题意:一棵树,每条边上有一些字符,求目标串出现了多少次 直接求目标串的fail然后一边dfs一边跑kmp 然后就被特殊数据卡到\(O(n^2)\)了... 因为这样kmp复杂度分析的基础 ...
- 『The Captain 最短路建图优化』
The Captain(BZOJ 4152) Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小 ...
- TVM图优化(以Op Fusion为例)
首先给出一个TVM 相关的介绍,这个是Tianqi Chen演讲在OSDI18上用的PPThttps://files.cnblogs.com/files/jourluohua/Tianqi-Chen- ...
随机推荐
- Hangfire在ASP.NET CORE中的简单实现方法
hangfire是执行后台任务的利器,具体请看官网介绍:https://www.hangfire.io/ 新建一个asp.net core mvc 项目 引入nuget包 Hangfire.AspNe ...
- 让访问pc端的官网直接跳转到移动端的网站代码
<SCRIPT LANGUAGE="JavaScript"> function mobile_device_detect(url) { var thisOS=navig ...
- 从苏宁电器到卡巴斯基第25篇:难忘的三年硕士时光 III
阴差阳错,走上了讲师的道路 时间已经来到了2015年的1月,我的找工作之路也是屡败屡战,屡战屡败.金山.百度以及腾讯不约而同地不要我,使得我对于自己的未来充满了迷茫.尽管才研二而已,可是对于我这种没有 ...
- Android平台下Dalvik层hook框架ddi的研究
通过adbi,可以对native层的所有代码进行hook.但对于Android系统来说,这还远远不够,因为很多应用都还是在Dalvik虚拟机中运行的. 那么,有没有什么办法可以对Dalvik虚拟机中跑 ...
- Python编写基于socket的非阻塞多人聊天室程序(单线程&多线程)
前置知识:socket非阻塞函数(socket.setblocking(False)),简单多线程编程 代码示例: 1. 单线程非阻塞版本: 服务端: #!/usr/bin/env python # ...
- android apk壳
壳对于有过pc端加解密经验的同学来说并不陌生,android世界中的壳也是相同的存在.看下图(exe = dex): 概念清楚罗,我们就说下:壳最本质的功能就是实现加载器.你看加壳后,系统是先执 ...
- 怎样用jquery添加HTML代码
方法一: $(".demo").html("<span></span>") 方法二: var $span=$("<spa ...
- Nacos使用 MySQL 8.0 提示Public Key Retrieval is not allowed
原因如下(参考官网给出的连接选项): 如果用户使用了 sha256_password 认证,密码在传输过程中必须使用 TLS 协议保护,但是如果 RSA 公钥不可用,可以使用服务器提供的公钥:可以在连 ...
- MySQL模糊查询,查询语句是对的。但是就是没有查询结果
问题 解决 当我用其他非中文的值去查询,发现可以查询到结果 所以问题就出现在数据库的配置中 spring.datasource.url=jdbc:mysql://localhost:3306/data ...
- 从几道题目带你深入理解Event Loop_宏队列_微队列
目录 深入探究JavaScript的Event Loop Event Loop的结构 回调队列(callbacks queue)的分类 Event Loop的执行顺序 通过题目来深入 深入探究Java ...