1. 设置坐标轴的位置和展示形式

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl mpl.use('Qt5Agg')
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串 plt.axes([0.05, 0.7, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="--")
plt.ylim(0, 1.5)
plt.axis("image") plt.axes([0.3, 0.4, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(2 + np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle="-")
plt.ylim(0, 15)
plt.axis([2.1, 3.9, 0.5, 1.9]) plt.axes([0.55, 0.1, 0.3, 0.3], frameon=True, facecolor="y", aspect="equal")
plt.plot(4 + np.arange(3), [0, 1, 0], color="blue", linewidth=2, linestyle=":")
plt.ylim(0, 1.5)
plt.axis("off") plt.show()

  • 函数axes(rect, frameon=True, facecolor="y")

    • rect = [left, bottom, width, height]

      leftbottom分别表示坐标轴的左侧边缘和底部边缘距离画布边缘的距离,widthheight分别表示坐标轴的宽度和高度

      leftwidth是画布宽度归一化后的距离,bottomheight是画布高度归一化后的距离。

    • frameon=True

      是否显示四条轴脊

    • facecolor="y"

      填充坐标轴背景的颜色

  • 函数axis()

    • [xmin, xmax, ymin, ymax]

      显示坐标轴的范围
    • option,可取值为
      • 'on':打开坐标轴
      • 'off':关闭坐标轴显示
      • 'equal':设置相等的比例,y轴和x轴单位刻度对应长度是一样的
      • 'scaled':通过更改绘图框的尺寸设置相等的缩放比例
      • 'tight':设置足够大的限制来显示所有数据
      • 'auto':自动确定
      • 'image':‘scaled’ with axis limits equal to data limits
      • 'square':方形图,类似于 ‘scaled’,但是强制xmax-xmin = ymax-ymin

2. 坐标轴刻度的显示

import matplotlib.pyplot as plt
import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串 ax1 = plt.subplot(121)
ax1.set_xticks(range(0, 251, 50))
plt.grid(True, axis="x") ax2 = plt.subplot(122)
ax2.set_xticks([])
plt.grid(True, axis="x") plt.show()

如果不设置坐标轴刻度,则网格线也不会被设置。设置刻度还包括刻度标签,可以用函数Axes.set_xticklabels()Axes.set_yticklabels()设置对应刻度线的标签

3. 坐标轴的样式和位置的定制化展示

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.ticker import FormatStrFormatter
from calendar import day_name mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串 fig = plt.figure() ax = fig.add_axes([0.2, 0.2, 0.7, 0.7])
ax.spines["bottom"].set_position(("outward", 10))
ax.spines["left"].set_position(("outward", 10))
ax.spines["top"].set_color("none")
ax.spines["right"].set_color("none") x = np.arange(1, 8, 1)
y = 2 * x + 1 ax.scatter(x, y, c="orange", s=50, edgecolors="orange") for tickline in ax.xaxis.get_ticklines():
tickline.set_color("blue")
tickline.set_markersize(8)
tickline.set_markeredgewidth(5) for ticklabel in ax.get_xmajorticklabels():
ticklabel.set_color("slateblue")
ticklabel.set_fontsize(12)
ticklabel.set_rotation(20) ax.yaxis.set_major_formatter(FormatStrFormatter(f"$\yen%1.1f$"))
plt.xticks(x, day_name[0:7], rotation=20)
ax.yaxis.set_ticks_position("left")
ax.xaxis.set_ticks_position("bottom") for tickline in ax.yaxis.get_ticklines():
tickline.set_color("lightgreen")
tickline.set_markersize(8)
tickline.set_markeredgewidth(5) for ticklabel in ax.get_ymajorticklabels():
ticklabel.set_color("green")
ticklabel.set_fontsize(15) ax.grid(ls=":", lw=1, color="gray", alpha=0.5) plt.show()

4. 移动坐标轴的位置

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['font.serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题,或者转换负号为字符串 x = np.linspace(-2 * np.pi, 2 * np.pi, 200)
y = np.sin(x)
y1 = np.cos(x) ax = plt.subplot(111) ax.plot(x, y, ls="-", lw=2, label=r"$\sin(x)$")
ax.plot(x, y1, ls="-", lw=2, label=r"$\cos(x)$") ax.legend(loc="lower left") plt.title(r"$\sin(x)$" + "和" + r"$\cos(x)$" + "函数") ax.set_xlim(-2 * np.pi, 2 * np.pi) plt.xticks([-2 * np.pi, -3 * np.pi / 2, -1 * np.pi, -1 * np.pi / 2,
0, np.pi / 2, np.pi, 3 * np.pi / 2, 2 * np.pi],
[r"$-2\pi$", r"$-3\pi/2$", r"$-\pi$", r"$-\pi/2$",
r"$0$", r"$\pi/2$", r"$\pi$", r"$3\pi/3$", r"$2\pi$"]
) ax.spines["right"].set_color("none")
ax.spines["top"].set_color("none") ax.spines["bottom"].set_position(("data", 0))
ax.spines["left"].set_position(("data", 0)) ax.xaxis.set_ticks_position("bottom")
ax.yaxis.set_ticks_position("left") plt.show()

ax.spines[key]会调用轴脊字典,如bottomtoprightleft键值是对应位置轴脊,ax.spines["bottom"].set_position(("data", 0))表示将底轴移到数轴0坐标位置

『Python』matplotlib坐标轴应用的更多相关文章

  1. 『Python』matplotlib共享绘图区域坐标轴

    1. 共享单一绘图区域的坐标轴 有时候,我们想将多张图形放在同一个绘图区域,不想在每个绘图区域只绘制一幅图形.这时候,就可以借助共享坐标轴的方法实现在一个绘图区域绘制多幅图形的目的. import n ...

  2. 『Python』matplotlib的imshow用法

    热力图是一种数据的图形化表示,具体而言,就是将二维数组中的元素用颜色表示.热力图之所以非常有用,是因为它能够从整体视角上展示数据,更确切的说是数值型数据. 使用imshow()函数可以非常容易地制作热 ...

  3. 『Python』matplotlib初识

    1. 核心原理 使用matplotlib绘图的原理,主要就是理解figure(画布).axes(坐标系).axis(坐标轴)三者之间的关系. 下面这幅图更详细: 以"美院学生张三写生画画&q ...

  4. 『Python』matplotlib实现GUI效果

    1. 类RadioButtons的使用方法 类似单选框 import numpy as np import matplotlib.pyplot as plt import matplotlib as ...

  5. 『Python』matplotlib实现动画效果

    一般而言,在绘制复杂动画时,主要借助模块animation来完成 import numpy as np import matplotlib.pyplot as plt import matplotli ...

  6. 『Python』matplotlib划分画布的主要函数

    1. subplot() 绘制网格区域中几何形状相同的子区布局 函数签名有两种: subplot(numRows, numCols, plotNum) subplot(CRN) 都是整数,意思是将画布 ...

  7. 『Python』matplotlib常用图表

    这里简要介绍几种统计图形的绘制方法,其他更多图形可以去matplotlib找examples魔改 1. 柱状图 柱状图主要是应用在定性数据的可视化场景中,或是离散数据类型的分布展示.例如,一个本科班级 ...

  8. 『Python』matplotlib常用函数

    1. 绘制图表组成元素的主要函数 1.1 plot()--展现量的变化趋势 import numpy as np import matplotlib.pyplot as plt import matp ...

  9. 『Python』__getattr__()特殊方法

    self的认识 & __getattr__()特殊方法 将字典调用方式改为通过属性查询的一个小class, class Dict(dict): def __init__(self, **kw) ...

随机推荐

  1. NOIP 模拟 $15\; \text{影子}$

    题解 \(by\;zj\varphi\) 一道并查集的题 对于它路径上点权,我们可以转化一下:对于一个点,它在哪些路径上是最小的点权 那么我们排个序,从大到小加入点,每回加入时,将这个点与它所相连的且 ...

  2. mysql悲观锁和乐观锁

    悲观锁 查出来的数据必须是根据索引查出来的,不然锁表. # 语法 select * from table where id = 1 for update; 乐观锁 使用一个标识 cas 比较后替换 如 ...

  3. 编译ffmpeg(第一次),实现JPG转MP4

    ffpmeg网址:http://ffmpeg.org/ ffmpegapi文档:http://ffmpeg.org/doxygen/trunk/index.html 因为这是JPG转MP4,所以不涉及 ...

  4. bootStrap模态框与select2合用时input不能获取焦点、模态框内部滑动,select选中跳转

    bootStrap模态框与select2合用时input不能获取焦点 在bootstrap的模态框里使用select2插件,会导致select2里的input输入框没有办法获得焦点,没有办法输入. 把 ...

  5. 在ubuntu18.04上部署项目时遇到的问题总结

    因为在实验室中,有几台空闲的机子,我便选了一台准备做一个本地的服务器,因为买的阿里云学生机和之前用于FQ的机子感觉都不太顺手,阿里的学生机配置稍低,FQ用的服务器延迟太高.开始在centos和ubun ...

  6. mzy git学习,删除文件(三)

    删除一个文件(工作区删除,并且在本地版本库中也删除) 第一种方式: rm test.txt 先删除工作区的test.txt git add test.txt (我的理解是,将删除test.txt这个动 ...

  7. SpringMVC IO 文件上传

    1 public class FileUtil { 2 3 4 /** 5 * 读取文件内容,作为字符串返回 6 */ 7 public static String readFileAsString( ...

  8. 【WPF】 OxyPlot图表控件学习

    最近在学习OxyPlot图表控件,一些基本的学习心得,在这里记录一下,方便以后进行查找.   一.引用 OxyPlot控件可以直接在VS的 " Nuget " 里面下载   选择: ...

  9. vue之 分页封装

    npm 下载 npm i element-ui -S components 创建 Page 文件夹 创建 Page.vue 文件 vue 文件 <template>   <div c ...

  10. 【曹工杂谈】Maven源码调试工程搭建

    Maven源码调试工程搭建 思路 我们前面的文章<[曹工杂谈]Maven和Tomcat能有啥联系呢,都穿打补丁的衣服吗>分析了Maven大体的执行阶段,主要包括三个阶段: 启动类阶段,负责 ...