HDU 5251 矩形面积 (旋转卡壳)
2015年百度之星程序设计大赛 - 初赛(1) 1006
题目链接:HDU 5251
Problem Description
小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
Input
第一行一个正整数 \(T\),代表测试数据组数 \((1\le T\le 20)\),接下来 \(T\) 组测试数据。
每组测试数据占若干行,第一行一个正整数 \(N(1\le N\le 1000)\),代表矩形的数量。接下来 \(N\) 行,每行 \(8\) 个整数 \(x1,y1,x2,y2,x3,y3,x4,y4\),代表矩形的四个点坐标,坐标绝对值不会超过10000。
Output
对于每组测试数据,输出两行:
第一行输出"Case #i:",i 代表第 i 组测试数据。
第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。
Sample Input
2
2
5 10 5 8 3 10 3 8
8 8 8 6 7 8 7 6
1
0 0 2 2 2 0 0 2
Sample Output
Case #1:
17
Case #2:
4
Solution
旋转卡壳
思路见这里:洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
杭电就比较良心了,没有卡精度。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int maxn = 100000 + 5;
int n;
inline int dcmp(double x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
Point operator+(Point a) {
return Point(a.x + x, a.y + y);
}
Point operator-(Point a) {
return Point(x - a.x, y - a.y);
}
bool operator<(const Point &a) const {
if (x == a.x)
return y < a.y;
return x < a.x;
}
Point operator*(double a) {
return Point(x * a, y * a);
}
bool operator==(const Point &a) const {
if (x == a.x && y == a.y)
return 1;
return 0;
}
double len() {
return sqrt(x * x + y * y);
}
double dis2(const Point a) {
return pow(x - a.x, 2) + pow(y - a.y, 2);
}
double dis(const Point a) {
return sqrt(dis2(a));
}
};
Point ans[10];
typedef Point Vector;
double cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
double dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
typedef vector<Point> Polygon;
Polygon Andrew(Polygon P) {
int n = P.size(), k = 0;
vector<Point> H(2 * n);
sort(P.begin(), P.end());
for (int i = 0; i < n; ++i) {
while (k >= 2 && cross(H[k - 1] - H[k - 2], P[i] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i];
}
int t = k + 1;
for (int i = n - 1; i > 0; --i) {
while (k >= t && cross(H[k - 1] - H[k - 2], P[i - 1] - H[k - 2]) < eps) {
k--;
}
H[k++] = P[i - 1];
}
H.resize(k - 1);
return H;
}
double rotating_caliper(Polygon v) {
double min_s = 1e18;
int cnt = v.size();
v.push_back(v[0]);
int u = 1, r = 1, l = 1;
for (int i = 0; i < cnt; ++i) {
// 最上面的点
while (dcmp(fabs(cross(v[u] - v[i], v[i + 1] - v[i])) - fabs(cross(v[u + 1] - v[i], v[i + 1] - v[i]))) <= 0) {
u = (u + 1) % cnt;
}
// 最右边的点
while (dcmp(dot(v[r] - v[i], v[i + 1] - v[i]) - dot(v[r + 1] - v[i], v[i + 1] - v[i])) <= 0) {
r = (r + 1) % cnt;
}
if(!i) l = r;
// 最左边的点
while (dcmp(dot(v[l] - v[i], v[i + 1] - v[i]) - dot(v[l + 1] - v[i], v[i + 1] - v[i])) >= 0) {
l = (l + 1) % cnt;
}
double d = v[i].dis(v[i + 1]);
double R = dot(v[r] - v[i], v[i + 1] - v[i]) / d;
double L = dot(v[l] - v[i], v[i + 1] - v[i]) / d;
double ll = R - L;
double dd = fabs(cross(v[u] - v[i], v[i + 1] - v[i])) / d;
min_s = min(min_s, ll * dd);
}
return min_s;
}
int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
scanf("%d", &n);
Polygon s;
for(int i = 0; i < n * 4; ++i) {
Point p;
scanf("%lf%lf", &p.x, &p.y);
s.push_back(p);
}
Polygon p = Andrew(s);
double d = rotating_caliper(p);
printf("Case #%d:\n%.0lf\n", _, d);
}
return 0;
}
HDU 5251 矩形面积 (旋转卡壳)的更多相关文章
- HDU 5251 矩形面积(二维凸包旋转卡壳最小矩形覆盖问题) --2015年百度之星程序设计大赛 - 初赛(1)
题目链接 题意:给出n个矩形,求能覆盖所有矩形的最小的矩形的面积. 题解:对所有点求凸包,然后旋转卡壳,对没一条边求该边的最左最右和最上的三个点. 利用叉积面积求高,利用点积的性质求最左右点和长度 ...
- [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖
旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- hdu 最大三角形(凸包+旋转卡壳)
老师在计算几何这门课上给Eddy布置了一道题目,题目是这样的:给定二维的平面上n个不同的点,要求在这些点里寻找三个点,使他们构成的三角形拥有的面积最大.Eddy对这道题目百思不得其解,想不通用什么方法 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)
给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...
随机推荐
- JavaScript 获取时间,时间戳
一. 动态获取js时间 1.方法一:最简单的写法,直接输出时间到页面 <!DOCTYPE html> <html> <head> <title>< ...
- python 使用yaml模块
python:yaml模块一.yaml文件介绍YAML是一种简洁的非标记语言.其以数据为中心,使用空白,缩进,分行组织数据,从而使得表示更加简洁.1. yaml文件规则基本规则: 大小写敏感 ...
- JAVA学习之面向对象
面向对象是相对面向过程而言面向过程:强调的是功能行为面向对象:将功能封装进对象,强调具备了功能的对象 不论面向对象还是面向过程都是一种开发思想而已.举一个例子来理解面向对象和面向过程把大象装进冰箱分三 ...
- C++——迭代器
除了每个容器定义的迭代器外,iterator库内还定义了其他的迭代器. 1.插入迭代器:向容器中插入元素 1.1 back_inserter 1.2 front_inserter 1.3 insert ...
- -webkit-box 高度自动填满
<style> .box{ display: -webkit-box; -webkit-box-orient: vertical; height: 200px; background: # ...
- 2018-8-10-WPF-DrawingVisual
title author date CreateTime categories WPF DrawingVisual lindexi 2018-08-10 19:16:53 +0800 2018-2-1 ...
- 2018-2-13-安装-aria2
title author date CreateTime categories 安装 aria2 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23:3 + ...
- Oracle 五笔码函数
五笔码 select comm.fun_spellcode_wb('数据库') from dual 结果:ORY 函数 CREATE OR REPLACE FUNCTION COMM.FUN_SPEL ...
- Codeforces 1175E 倍增
题意:给你n个区间和m次询问,每次询问一个区间[l, r]至少需要几个区间覆盖? 思路:如果只有一个区间,并且区间是整个取值范围的话,这是一个经典的区间覆盖问题,我们都知道贪心可以解决.现在我们需要快 ...
- mysql类型转换函数convert与cast的用法,及SQL server的区别
首先,convert函数 字符集转换 : CONVERT(xxx USING gb2312) 类型转换和SQL Server一样,不过类型参数上有不同: CAST(xxx AS 类型) ...