题解[SCOI2009]粉刷匠 难度:省选/NOI-
Description
每条木板被分为 M 个格子。
每个格子要被刷成红色或蓝色。
windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。
每个格子最多只能被粉刷一次。
如果windy只能粉刷 T 次,他最多能正确粉刷多少格子?
一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
Input
接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。
Output
Sample Input
3 6 3
111111
000000
001100
Sample Output
16
Data Constraint
Hint
这道题很显然是一道动态规划题,但是我们发现,如果我们想用一个动态规划去做这道题,那么状态和转移都会十分的麻烦,这时候我们就要想是否需要两个动态规划来完成一个复杂的过程,我们看到这道题如果只问每一行的最优结果,那么转移就会很简单,所以我们可不可以将这个问题转化成先求每一行粉刷k次的最优解再求前i行操作k次的最优解。
既然思路确定,那么我们就可以设状态了:1-设置g数组表示在第i行,粉刷j次,刷到k的最优解,2-设置f表示前i行,刷j次的最优解。
转移方程也很好写:1- g[i][j][k]=max(g[i][j][k],max(用前缀和计算在p到k之间最多可以有多少正确的)+g[i][j-1][p]); p是从j-1开始枚举的,具体为什么代码上有注释,k是从j开始的,因为j进行了j次粉刷后最少粉刷到j点。
关于f的是 f[i][j]=max(f[i-1][j-k]+g[i][k][m]).
下面上代码:
#include<iostream>
#include<cstdio>
using namespace std;
int f[][],sum[][]; //f表示前i行刷j次最大对值。
int g[][][]; //第i行,刷到第j个用k次粉刷得到的最大对值。
int n,m,t;
char s[];
int main(){
ios::sync_with_stdio();
cin>>n>>m>>t;
for(int i=;i<=n;i++){
cin>>s;
sum[i][]=;
for(int j=;j<=m;j++){
if(s[j-]=='') sum[i][j]=sum[i][j-]+;
else sum[i][j]=sum[i][j-];
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
for(int k=j;k<=m;k++){
for(int p=j-;p<k;p++){ //因为q是第j-1次粉刷,每一次粉刷至少一格,所以q最少为j-1.
g[i][j][k]=max(g[i][j][k],max(sum[i][k]-sum[i][p],k-p-sum[i][k]+sum[i][p])+g[i][j-][p]);
}
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=t;j++){
for(int k=;k<=min(j,m);k++){
f[i][j]=max(f[i][j],f[i-][j-k]+g[i][k][m]);
}
}
}
int ans=;
for(int i=;i<=t;i++){
ans=max(ans,f[n][i]);
}
cout<<ans;
}
题解[SCOI2009]粉刷匠 难度:省选/NOI-的更多相关文章
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
[BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- 背包 DP【洛谷P4158】 [SCOI2009]粉刷匠
P4158 [SCOI2009]粉刷匠 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上 ...
- BZOJ_1296_[SCOI2009]粉刷匠_DP
BZOJ_1296_[SCOI2009]粉刷匠_DP Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
随机推荐
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- TimeUnit类 java.util.concurrent.TimeUnit
TimeUnit是什么? TimeUnit是java.util.concurrent包下面的一个类,表示给定单元粒度的时间段 主要作用 时间颗粒度转换 延时 常用的颗粒度 TimeUnit.DAYS ...
- python实现一个简单的网络聊天程序
一.Linux Socket 1.Linux Socke基本上就是BSD Socket(伯克利套接字) 伯克利套接字的应用编程接口(API)是采用C语言的进程间通信的库,经常用在计算机网络间的通信.B ...
- let,const
- 让webstorm支持ES6语法:file-setting-languages&frameworks-javascript-右侧选择ES6 - let定义变量没有预解释且不能重复定义,在定 ...
- linux命令截取文件最后n行(所有命令)
linux命令截取文件最后n行(所有命令) tail -n a.txt > b.txt 联想:系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) una ...
- webstorm 2019 去掉编辑器右侧白线
第一步:打开设置 第二步: 第三部:apply 关闭设置
- MySQL的删除语句
虽然现在数据库空间越来越大,但处理数据时候还是有要删除的时候,以下整理了一些最常用的删除语句. 分成两种 一个是删除指定数据,另一个删除所有数据. 一.删除指定数据 DELETE FROM 表名 WH ...
- 使用Python和AWK两种方式实现文本处理的长拼接案例
最近由于业务系统新需求的需要,我们平台需要将供应商G提供一类数据转换格式后提供给客户K.比较头疼是供应商G提供的数据都是在Windows下使用Excel存储的,而客户K先前与我们相关对接人员商定的数据 ...
- python常用模块学习2
#sys模块 import sys # # print(sys.argv)#命令行参数List,第一个元素是程序本身路径 #主要用作网络请求判断 # command=sys.argv[1] # pat ...
- linux系统升级openssh
一.升级前准备工作 安装openssh过程需gcc,zlib-devel,openssl-devel,等编译环境,如果通过rpm包来安装,需要解决各种依赖包,故配置本地yum源解决依赖问题. 1. 配 ...