Day1T1仓鼠的石子游戏——博弈论
打比赛的时候还没学博弈论,打完下来花了半个多小时学完,发现这题就是一道\(SG\)函数
其实当时差一点就\(YY\)出了答案,但是后面太难想,所以没整出来
机房大佬们都说自己没学博弈论,但是都AC
题解
假设先手兔子(我)放的是黑棋,仓鼠(小埋)放的是白棋
首先这道题的\(n\)个环可以认为是\(n\)个独立的\(G_1,G_2,G_3...\)有向图游戏,共同构成\(G\)游戏
那么$SG(G) = SG(G_1) $ \(XOR\) \(SG(G_2)\) \(XOR\) \(SG(G_3)......\)
所以我们只需要构造每个环的\(SG\)函数即可(本题其实不需要构造
咋构造啊
手玩一下样例,发现当\(a[i] = 1\)时有先手必胜态
其他的咋搞呢
好多人手玩样例赌了一下有先手必败态,然后还真的\(A\)了,就连题解都是这么写的……
然而正直的我没……
咳咳,首先有必败态当且仅当所有的空位置都在黑棋旁边。
那么我们就可以列出所有的必败态
首先空位置一定不能挨在一起,不然就可以填上某个颜色的棋
其次省略空位后黑棋白棋一定交替轮流出现,因为假如有两个相同颜色的棋相邻的话,其间必有一个空位,而这个空位可以填另一种颜色的棋
那么最后就可以说明最后黑棋白棋数量一定一样多
考虑奇偶性
当\(a[i]\)为奇数时,下一个轮到黑棋,黑棋如果要摆放,必须与另一个黑棋相邻,先手必败
当\(a[i]\)为偶数时,下一个轮到黑棋,黑棋没得走,先手必败
所以当$a[i] $不为\(1\)时,\(SG(G_i)\)均为\(0\)
为\(1\)时均为\(1\)
那么最后用\(SG\)函数\(XOR\)一下就可以了
代码:
#include<bits/stdc++.h>
using namespace std;
#define rint register int
#define s1 "rabbit\n"
#define s2 "hamster\n"
int n, a[1010], T;
int main( void ){
scanf( "%d", &T );
while( T-- ){
memset( a, 0, sizeof( a ) );
scanf( "%d", &n );
for( rint i = 1; i <= n; i++ ){
int temp; scanf( "%d", &temp );
if( temp == 1 ) a[i] = 1;
else a[i] = 0;
}
for( rint i = 2; i <= n; i++ ) a[1] ^= a[i];
if( a[1] == 1 ) printf( s1 ); else printf( s2 );
}
return 0;
}
Day1T1仓鼠的石子游戏——博弈论的更多相关文章
- POJ.1067 取石子游戏 (博弈论 威佐夫博弈)
POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- 【Foreign】石子游戏 [博弈论]
石子游戏 Time Limit: 10 Sec Memory Limit: 256 MB Description Input Output 输出T行,表示每组的答案. Sample Input 3 ...
- hdu 2516 取石子游戏 博弈论
很显然的nim游戏的变形,很好找规律 先手败:2,3,5,8,13…… 其他先手胜.即满足菲波拉数列. 代码如下: #include<iostream> #include<stdio ...
- 【GZOI2015】石子游戏 博弈论 SG函数
题目大意 有\(n\)堆石子,两个人可以轮流取石子.每次可以选择一堆石子,做出下列的其中一点操作: 1.移去整堆石子 2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y&l ...
- HDU.2516.取石子游戏(博弈论 Fibonacci Nim)
题目链接 \(Description\) 1堆石子有n个.两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍,取完者胜.问谁能赢. \(Solution ...
- 洛谷$P$2252 取石子游戏 博弈论
正解:博弈论 解题报告: 传送门! 威佐夫博弈板子昂$QwQ$ 关于这一类问题也有个结论,是说,先手必败的状态一定形如$(\left \lfloor i+\phi \right \rfloor,\le ...
- hdu 2177 取(2堆)石子游戏 博弈论
由于要输出方案,变得复杂了.数据不是很大,首先打表,所有whthoff 的奇异局势. 然后直接判断是否为必胜局面. 如果必胜,首先判断能否直接同时相减得到.这里不需要遍历或者二分查找.由于两者同时减去 ...
- 「牛客CSP-S2019赛前集训营1」仓鼠的石子游戏
传送门 NowCoder 解题思路 考虑这样一件事:在任何的同一个石圈,后手肯定会输. 证明很简单,手玩一下就可以大致意会. 但是有一种特殊情况,就是大小为1的圈,这种圈就是起到一次交换先后手的作用, ...
随机推荐
- [LC] 243. Shortest Word Distance
Given a list of words and two words word1 and word2, return the shortest distance between these two ...
- 吴裕雄--天生自然python学习笔记:Python3 命名空间和作用域
命名空间(Namespace)是从名称到对象的映射,大部分的命名空间都是通过 Python 字典来实现的. 命名空间提供了在项目中避免名字冲突的一种方法.各个命名空间是独立的,没有任何关系的,所以一个 ...
- ES6中 const 关键字
const声明一个只读的常量.一旦声明,常量的值就不能改变. 定义后可以使用但不能修改 但是,const 定义的对象可能与我们想象的不太一样 定义了对象b ,我们可以在b上添加修改属性,再看一个列子 ...
- iOS 9,为前端世界都带来了些什么?「译」 - 高棋的博客
2015 年 9 月,Apple 重磅发布了全新的 iPhone 6s/6s Plus.iPad Pro 与全新的操作系统 watchOS 2 与 tvOS 9(是的,这货居然是第 9 版),加上已经 ...
- Docker Swarm和Kubernetes在大规模集群中的性能比较
Contents 这篇文章主要针对Docker Swarm和Kubernetes在大规模部署的条件下的3个问题展开讨论.在大规模部署下,它们的性能如何?它们是否可以被批量操作?需要采取何种措施来支持他 ...
- JVM、JRE和JDK三者间的区别和联系
简介:我们利用JDK(调用JAVA API)开发了属于我们自己的JAVA程序后,通过JDK中的编译程序(javac)将我们的文本java文件编译成JAVA字节码,在JRE上运行这些JAVA字节码,JV ...
- 安卓权威编程指南-笔记(第23章 HTTP与后台任务)
1. 网络连接基本 //通过指定URL获取原始数据,并返回一个字节流数组. public byte[] getUrlBytes(String urlSpec)throws IOException{ / ...
- 前端笔记--css样式笔记
一.浮动 定位布局 1.浮动布局 left 元素向左浮动 right 元素向右浮动 例如:设置2个按钮,要使得按钮在同一行位置摆放,可以使用浮动,令按钮浮动到右边.注意,先设置float的按钮,例如: ...
- 《自拍教程35》段位二_Python面向过程函数
Python批处理脚本只能处理较为简单的顺序执行的语句, 语句太多了,就有点乱...是时候升级一下了. 函数可以将多条语句分组封装,实现面向过程的,简单的模块化管理. 方便将语句实行"网格& ...
- 简单说 通过CSS实现 文字渐变色 的两种方式
说明 这次的重点就在于两个属性, background 属性 mask 属性 这两个属性分别是两种实现方式的关键. 解释 方式一 效果图 代码 <!DOCTYPE html> <ht ...