题目描述

为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。 如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:  从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。 游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

输入

有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。

输出

单行输出指定的扑克牌的牌面大小。

样例输入

6 2 3

样例输出

6


题解

欧拉定理

由题意,第i张牌洗牌后的位置是2i mod (n+1)。

那么原题就是要求$2^m·x\equiv l\ \ \ (mod\ (n+1))$的最小正整数解 。

直接使用乘法逆元将$2^m$除过去即可。

注意到$2^m$与$n+1$一定是互质的,因此由欧拉定理$a^{\varphi(p)}\equiv 1\ (mod\ p)$,可以求得$2^m$的逆元为$(2^m)^{\varphi(n+1)-1}$。

求一下欧拉函数并使用快速幂求解即可。

当然好像还有更快但是更麻烦的EXgcd算法

由于两个大数相乘会爆long long,因此还要使用快(man)速乘

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mul(ll x , ll y , ll mod)
{
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % mod;
x = (x + x) % mod , y >>= 1;
}
return ans;
}
ll pow(ll x , ll y , ll mod)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = mul(ans , x , mod);
x = mul(x , x , mod) , y >>= 1;
}
return ans;
}
ll phi(ll x)
{
ll ans = x , i;
for(i = 2 ; i * i <= x ; i ++ )
{
if(x % i == 0)
{
ans = ans / i * (i - 1);
while(x % i == 0) x /= i;
}
}
if(x > 1) ans = ans / x * (x - 1);
return ans;
}
int main()
{
ll n , m , l;
scanf("%lld%lld%lld" , &n , &m , &l);
printf("%lld\n" , mul(pow(pow(2 , m , n + 1) , phi(n + 1) - 1 , n + 1) , l , n + 1));
return 0;
}

【bzoj1965】 [Ahoi2005]SHUFFLE 洗牌 欧拉定理的更多相关文章

  1. BZOJ1965 [Ahoi2005]SHUFFLE 洗牌 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1965 题意概括 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取 ...

  2. bzoj1965 [Ahoi2005]SHUFFLE 洗牌

    Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...

  3. 2018.11.07 bzoj1965: [Ahoi2005]SHUFFLE 洗牌(快速幂+exgcd)

    传送门 发现自己的程序跑得好慢啊233. 管他的反正AC了 先手玩样例找了一波规律发现题目要求的就是a∗2m≡l(modn+1)a*2^m\equiv l \pmod {n+1}a∗2m≡l(modn ...

  4. BZOJ1965: [Ahoi2005]SHUFFLE 洗牌(exgcd 找规律)

    Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 989  Solved: 660[Submit][Status][Discuss] Description ...

  5. 【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得

    [bzoj1965]: [Ahoi2005]SHUFFLE 洗牌 观察发现第x张牌 当x<=n/2 x=2x 当x>n/2 x=2x-n-1 好像就是 x=2x mod (n+1)  就好 ...

  6. 【BZOJ-1965】SHUFFLE 洗牌 快速幂 + 拓展欧几里德

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 541  Solved: 326[Submit][St ...

  7. BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )

    对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...

  8. 1965: [Ahoi2005]SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 408  Solved: 240[Submit][St ...

  9. [AHOI2005] SHUFFLE 洗牌

    1965: [Ahoi2005]SHUFFLE 洗牌 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 952  Solved: 630[Submit][St ...

随机推荐

  1. 洛谷 P1433 吃奶酪

    题目描述 房间里放着n块奶酪.一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在(0,0)点处. 输入输出格式 输入格式: 第一行一个数n (n<=15) 接下来每行2个实数,表示第i块 ...

  2. 清理winsxs文件夹(系统更新文件)的第三方工具

    工具名称(第三方): Windows Update Clean Tool 下载地址: http://www.xiazaiba.com/html/24145.html http://dx5.xiazai ...

  3. 重温Javascript(二)-对象

    对象 可以想象成散列表,键值对,值可以是数据或函数 创建对象的方式 1.工厂模式 function createPerson(name, age, job){ var o = new Object() ...

  4. thisnkphp添加二维码

    Rcode二维码生成类QRcode.class.php实例演示 <?php //import('@.Org.QRcode');//thinkphp include_once('QRcode.cl ...

  5. SpringMVC-常用的注解

    1. RequestParam注解 把请求中的指定名称的参数传递给控制器中的形参赋值 value:请求参数中的名称 require:请求参数中是否必须提供此参数,默认值是true,必须提供 2. Re ...

  6. Ajax的原理及Django上传组件

    title: Ajax的原理及Django上传组件 tags: Django --- Ajax的原理及Django上传组件 Ajax的原理 ajax 是异步JavaScript和xml ajax就是向 ...

  7. NPM下载模块包说明

    博主对npm包安装收集了各种资料和实践后对它们之间的差异整理,写下这篇文章避免自己忘记,同时也给node.js猿友一点指引. 我们在使用 npm install 安装模块的模块的时候 ,一般会使用下面 ...

  8. (转发)InputAccessoryView的使用方法

    转自:http://blog.sina.com.cn/s/blog_45e2b66c01015we9.html UITextFields and UITextViews have an inputAc ...

  9. 安装mysqlclient失败

    环境:python3.6 sudo apt-get install python3.6-dev sudo apt-get install default-libmysqlclient-dev 参考:h ...

  10. vue-cli webpack配置cdn路径 以及 上线之后的字体文件跨域处理

    昨天搞了一下vue项目打包之后静态资源走阿里云cdn. 配置了半天,终于找到了设置的地方 config/index.js 里面设置build 下的 assetsPublicPath 打包的时候便可以添 ...