$ \color{#0066ff}{ 题目描述 }$

Alice和Bob两个好朋含友又开始玩取石子了。游戏开始时,有N堆石子

排成一排,然后他们轮流操作(Alice先手),每次操作时从下面的规则中任选一个:

·从某堆石子中取走一个

·合并任意两堆石子

不能操作的人输。Alice想知道,她是否能有必胜策略。

\(\color{#0066ff}{输入格式}\)

第一行输入T,表示数据组数。

对于每组测试数据,第一行读入N。

接下来N个正整数a1,a2…an,表示每堆石子的数量。

\(\color{#0066ff}{输出格式}\)

对于每组测试数据,输出一行。

输出YES表示Alice有必胜策略,输出NO表示Alice没有必胜策略。

\(\color{#0066ff}{输入样例}\)

3
3
1 1 2
2
3 4
3
2 3 5

\(\color{#0066ff}{输出样例}\)

YES
NO
NO

\(\color{#0066ff}{数据范围与提示}\)

100%的数据满足T<=100, N<=50. ai<=1000

\(\color{#0066ff}{题解}\)

如果合并,石子数不变,如果取,石子数-1,表面上看,结局已经注定,跟操作数的奇偶有关

然而,会有这样的情况,比如1和1

合并,那么操作数-1,如果取走一个1,那么操作数-2!!!这是不一样的

于是我们发现,状态实际上只跟1的堆数和操作数有关

所以,设\(sg[x][y]\)表示当前有x堆是1,除了1的那些堆的操作数共y次的SG值

然后分别讨论所有情况进行转移

因为不涉及多个游戏的合并,所以sg不是0就是1,就不用开vis数组记录什么东西了

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
int n;
int sg[55][52050];
int work(int x, int y) {
if(!x) return y & 1;
if(y == 1) return sg[x][y] = work(x + 1, y - 1);
if(~sg[x][y]) return sg[x][y];
if(x && !work(x - 1, y)) return sg[x][y] = 1;
if(x && y && !work(x - 1, y + 1)) return sg[x][y] = 1;
if(x >= 2 && !work(x - 2, y + 2 + (y > 0))) return sg[x][y] = 1;
if(y && !work(x, y - 1)) return sg[x][y] = 1;
//拿走一个1
//1跟非1合并
//两个1合并
//某个非1堆拿走1个或合并两个非1堆
return sg[x][y] = 0;
}
int main() {
memset(sg, -1, sizeof sg);
for(int T = in(); T --> 0;) {
n = in();
int x = 0, y = 0, z;
for(int i = 1; i <= n; i++) {
z = in();
x += (z == 1);
y += (z > 1) * z;
}
y += n - x - 1;
if(y == -1) y++;
printf(!work(x, y)? "NO\n" : "YES\n");
}
return 0;
}

bzoj 3895: 取石子的更多相关文章

  1. BZOJ 3895: 取石子[SG函数 搜索]

    有N堆石子 ·从某堆石子中取走一个 ·合并任意两堆石子 不能操作的人输. 100%的数据满足T<=100,  N<=50. ai<=1000   容易发现基础操作数$d=\sum a ...

  2. bzoj 3895 取石子——博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...

  3. bzoj 3895 取石子 —— 博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看了博客:https://blog.csdn.net/popoqqq/article/ ...

  4. bzoj 1874 取石子游戏 题解 &amp; SG函数初探

    [原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved ...

  5. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

  6. BZOJ 3895 3895: 取石子 / Luogu SP9934 ALICE - Alice and Bob (博弈 记忆化搜索)

    转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都&g ...

  7. 【BZOJ】3895: 取石子

    [算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...

  8. BZOJ 1413 取石子游戏(DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...

  9. BZOJ 1874 取石子游戏 (NIM游戏)

    题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...

随机推荐

  1. 【287】◀▶ arcpy 常用类说明

    ArcPy 类列表(按字母顺序) 01   Raster 创建一个可在 Python 脚本或地图代数表达式中使用的栅格对象. 02   Cursor Cursor 是一种数据访问对象,可用于在表中迭代 ...

  2. POJ1308

    1.题目链接地址 http://poj.org/problem?id=1308 2.源代码 #include<iostream> using namespace std; #define ...

  3. 求输出和为n的所有连续自然数序列

    这是编程之美中的一道题.编程之美中的题目是这样的: 1+2=3 4+5=9 2+3+4=9 等式的左边都是两个或者两个以上的连续自然数相加,那么是不是所有的整数都可以写成这样的形式? 问题1:写个程序 ...

  4. day58-activiti 02-历史数据查询

    Activity 笔记  第二天 今天内容安排: 1.历史数据查询 办过多少个任务, 这些历史数据有时候我们也需要去查询一下. 本身day02这个项目就没有导jar包,有点类似于maven,在你的项目 ...

  5. 算法优化》关于1D*1D的DP的优化

    关于这一主题的DP问题的优化方法,我以前写过一篇博客与其有关,是关于对递推形DP的前缀和优化,那么这种优化方法就不再赘述了. 什么叫1D*1D的DP捏,就是一共有N种状态,而每种状态都要N种决策,这就 ...

  6. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  7. Java 设计模式 和七大设计原则

    创建型模式 抽象工厂模式(Abstract factory pattern): 提供一个接口, 用于创建相关或依赖对象的家族, 而不需要指定具体类. 生成器模式(Builder pattern): 使 ...

  8. HDU 3724 Encoded Barcodes (Trie)

    题意:给n个字符串,给m个询问,每个询问给k个条形码.每个条形码由8个小码组成,每个小码有相应的宽度,已知一个条形码的宽度只有2种,宽的表示1,窄的表示0.并且宽的宽度是窄的宽度的2倍.由于扫描的时候 ...

  9. 关于Java异常一段很有意思的代码

    今天学习了Java的异常,讲到try-catch-finally时,老师演示了一段代码,觉得很有意思,很能反映出其执行的过程,让自己有点绕,特意记录一下. 只要代码执行到try代码内部, 不管有没有异 ...

  10. Android在一个app中启动另一个App

    Intent intent = new Intent(Intent.ACTION_MAIN); intent.addCategory(Intent.CATEGORY_LAUNCHER); Compon ...