bzoj 3895: 取石子
$ \color{#0066ff}{ 题目描述 }$
Alice和Bob两个好朋含友又开始玩取石子了。游戏开始时,有N堆石子
排成一排,然后他们轮流操作(Alice先手),每次操作时从下面的规则中任选一个:
·从某堆石子中取走一个
·合并任意两堆石子
不能操作的人输。Alice想知道,她是否能有必胜策略。
\(\color{#0066ff}{输入格式}\)
第一行输入T,表示数据组数。
对于每组测试数据,第一行读入N。
接下来N个正整数a1,a2…an,表示每堆石子的数量。
\(\color{#0066ff}{输出格式}\)
对于每组测试数据,输出一行。
输出YES表示Alice有必胜策略,输出NO表示Alice没有必胜策略。
\(\color{#0066ff}{输入样例}\)
3
3
1 1 2
2
3 4
3
2 3 5
\(\color{#0066ff}{输出样例}\)
YES
NO
NO
\(\color{#0066ff}{数据范围与提示}\)
100%的数据满足T<=100, N<=50. ai<=1000
\(\color{#0066ff}{题解}\)
如果合并,石子数不变,如果取,石子数-1,表面上看,结局已经注定,跟操作数的奇偶有关
然而,会有这样的情况,比如1和1
合并,那么操作数-1,如果取走一个1,那么操作数-2!!!这是不一样的
于是我们发现,状态实际上只跟1的堆数和操作数有关
所以,设\(sg[x][y]\)表示当前有x堆是1,除了1的那些堆的操作数共y次的SG值
然后分别讨论所有情况进行转移
因为不涉及多个游戏的合并,所以sg不是0就是1,就不用开vis数组记录什么东西了
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
int n;
int sg[55][52050];
int work(int x, int y) {
if(!x) return y & 1;
if(y == 1) return sg[x][y] = work(x + 1, y - 1);
if(~sg[x][y]) return sg[x][y];
if(x && !work(x - 1, y)) return sg[x][y] = 1;
if(x && y && !work(x - 1, y + 1)) return sg[x][y] = 1;
if(x >= 2 && !work(x - 2, y + 2 + (y > 0))) return sg[x][y] = 1;
if(y && !work(x, y - 1)) return sg[x][y] = 1;
//拿走一个1
//1跟非1合并
//两个1合并
//某个非1堆拿走1个或合并两个非1堆
return sg[x][y] = 0;
}
int main() {
memset(sg, -1, sizeof sg);
for(int T = in(); T --> 0;) {
n = in();
int x = 0, y = 0, z;
for(int i = 1; i <= n; i++) {
z = in();
x += (z == 1);
y += (z > 1) * z;
}
y += n - x - 1;
if(y == -1) y++;
printf(!work(x, y)? "NO\n" : "YES\n");
}
return 0;
}
bzoj 3895: 取石子的更多相关文章
- BZOJ 3895: 取石子[SG函数 搜索]
有N堆石子 ·从某堆石子中取走一个 ·合并任意两堆石子 不能操作的人输. 100%的数据满足T<=100, N<=50. ai<=1000 容易发现基础操作数$d=\sum a ...
- bzoj 3895 取石子——博弈论
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...
- bzoj 3895 取石子 —— 博弈论
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看了博客:https://blog.csdn.net/popoqqq/article/ ...
- bzoj 1874 取石子游戏 题解 & SG函数初探
[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 334 Solved ...
- BZOJ 1874 取石子游戏 - SG函数
Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...
- BZOJ 3895 3895: 取石子 / Luogu SP9934 ALICE - Alice and Bob (博弈 记忆化搜索)
转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都&g ...
- 【BZOJ】3895: 取石子
[算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...
- BZOJ 1413 取石子游戏(DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁 ...
- BZOJ 1874 取石子游戏 (NIM游戏)
题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...
随机推荐
- 【原】Coursera—Andrew Ng机器学习—Week 4 习题—Neural Networks 神经网络
[1] Answer:C [2] Answer:D 第二层要输出四个元素a1 a2 a3 a4.输入x有两个,加一个x0是三个.所以是4 * 3 [3] Answer:C [4] Answer:C [ ...
- random和os模块
一.random模块 常用方法如下: #-*- coding:utf-8 -*- import random print(random.randint(1,100)) # 获取一个范围内的随机数,包含 ...
- solr java api 使用solrj操作zookeeper集群中的solrCloud中的数据
1 导入相关的pom依赖 <dependencies> <dependency> <groupId>org.apache.solr</groupId> ...
- java Web jsp页面的静态包含和动态包含
现在有头 体 尾 三个jsp页面 top.jsp <%@ page language="java" contentType="text/html; charset= ...
- 【NOI2002】荒岛野人
[题解] 可以枚举m 那么任意两个野人之间有 c[i]+x*p[i]=c[j]+x*p[j] (mod m) 无解,或 x 的最小值<=min(l[i] , l[j]) 化为丢番图方程:(p[ ...
- 高性能的城市定位API接口
如果不需要精准的定位,还有一种通过IP地址获取当前城市的方法,采用新浪的api接口. <script src="http://int.dpool.sina.com.cn/iplooku ...
- Linux 搭建NFS文件服务器实现文件共享
我们接着玩Linux,O(∩_∩)O哈哈~ 1.什么是nfs NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP ...
- struts2 与 spring 整合
1. 首先把所有jar包导入工程 2.在struts2的核心配置文件(在src文件目录下)中添加如下配置: <!-- 将Struts的对象交给Spring管理 所以需要导入Spring和Stru ...
- 详解servlet的url-pattern匹配规则.RP
首先需要明确几容易混淆的规则: servlet容器中的匹配规则既不是简单的通配,也不是正则表达式,而是特定的规则.所以不要用通配符或者正则表达式的匹配规则来看待servlet的url-pattern. ...
- [原创]java:Stream、Socket等源码分析
一.对于java启动之后的线程的说明 java在启动后会有几个特殊线程: 1.main线程,主线程 2.JVM线程,虚拟机的线程 3.GC垃圾回收线程,是个守护线程 4.EDT&Toolkit ...