判断题

1.AOE图的关键路径就是最长的路径

    
T
    
F

2.AOE图的权值最大的边(活动)一定是关键活动。

    
T
    
F

两条边相加可能比最大的边还要大。

3.在AOE-网工程中,减少任一关键活动上的权值后,整个工期也就会相应的减小。

    
T
    
F

关键路径有多条时不一定。

4.AOE-网工程工期为关键活动上的权之和。

    
T
    
F

工期为起点到终点的最大路径长度。

5.在关键路径上的活动都是关键活动,而关键活动也必在关键路径上。

    
T
    
F

6.若图G有环,则G不存在拓扑排序序列。

    
T
    
F

存在拓扑排序和图是否有环是充分必要条件。

7.若图G为连通图且不存在拓扑排序序列,则图G必有环。

    
T
    
F

8.拓扑序一定是唯一的。

    
T
    
F

选择题

1.在AOE网中,什么是关键路径?

    A.最短回路

    B.最长回路

    C.从第一个事件到最后一个事件的最短路径

    D.从第一个事件到最后一个事件的最长路径

见定义。

2.如图所示的AOE-网,求这个工程最早可能在什么时间结束。

    A.33

    B.18

    C.43

    D.26

关键路径为1-3-2-5-6,把权值相加为43。

3.求如图所示的AOE-网的关键路径。

    A.

    B.

    C.

    D.

关键路径为1-3-2-5-6。

4.如图所示的AOE-网 ,事件④的最迟发生时间是。

    A.29

    B.37

    C.38

    D.43

4的最迟发生时间为整个工程的时间减去6。

5.下图所示的 AOE 网表示一项包含 8 个活动的工程。活动 d 的最早开始时间和最迟开始时间分别是:

    A.3 和 7

    B.12 和 12

    C.12 和 14

    D.15 和 15

d的最早开始时间为2结束后,也就是8+4=12,最迟发生时间为工程总时间27减g和d的长度。

6.对下图进行拓扑排序,可以得到不同的拓扑序列的个数是:

    A.4

    B.3

    C.2

    D.1

abced,aebcd,abecd。

7.下图为一个AOV网,其可能的拓扑有序序列为:

    A.ACBDEF

    B.ABCEFD

    C.ABCDFE

    D.ABCEDF

8.在拓扑排序算法中用堆栈和用队列产生的结果会不同吗?

    A.是的肯定不同

    B.肯定是相同的

    C.有可能会不同

    D.以上全不对

9.设有向图有n个顶点和e条边,采用邻接表存储,进行拓扑排序时,时间复杂度为()。

    A.O (nlog​2e)

    B.O ( elog​2n)

    C.O (e*n )

    D.O (n+e)

算法每次找玩度为0的点,需要O(n),有e条边,所以顶点的入度减1一共花了O(e),总共就是O(n+e)。

10.有拓扑排序的图一定是()。

    A.无向图

    B.有向无环图

    C.有环图

    D.强连通图

11.判定一个有向图是否存在回路除了可以利用拓扑排序方法外,还可以利用()。

    A.求最短路径的Dijkstra

    B.求生成树的方法

    C.深度优先遍历算法

    D.宽度优先遍历算法

深度优先搜索如果一个顶点被两次遍历就存在回路。

12.下列选项中,不是如下有向图的拓扑序列的是:

    A.1, 5, 2, 3, 6, 4

    B.5, 1, 2, 6, 3, 4

    C.5, 1, 2, 3, 6, 4

    D.5, 2, 1, 6, 3, 4

数据结构与算法(周测7-拓扑排序和AOV网络)的更多相关文章

  1. Java数据结构和算法(九)——高级排序

    春晚好看吗?不存在的!!! 在Java数据结构和算法(三)——冒泡.选择.插入排序算法中我们介绍了三种简单的排序算法,它们的时间复杂度大O表示法都是O(N2),如果数据量少,我们还能忍受,但是数据量大 ...

  2. 为什么我要放弃javaScript数据结构与算法(第十章)—— 排序和搜索算法

    本章将会学习最常见的排序和搜索算法,如冒泡排序.选择排序.插入排序.归并排序.快速排序和堆排序,以及顺序排序和二叉搜索算法. 第十章 排序和搜索算法 排序算法 我们会从一个最慢的开始,接着是一些性能好 ...

  3. 数据结构与算法——认识O(NlogN)的排序(2)

    输入整型数组和排序标识,对其元素按照升序或降序进行排序 (一组测试用例可能会有多组数据) 接口说明 原型: void sortIntegerArray(Integer[] pIntegerArray, ...

  4. 基于visual Studio2013解决算法导论之055拓扑排序

     题目 拓扑排序 解决代码及点评 // 拓扑排序.cpp : 定义控制台应用程序的入口点. // // 深度优先.cpp : 定义控制台应用程序的入口点. // // 图的邻接表表示.cpp : ...

  5. 数据结构与算法——认识O(NlogN)的排序(1)

    归并排序 1) 整体就是一个简单递归,左边排好序.右边排好序.让其整体有序 2) 让其整体有序的过程里用了外排序方法 3) 利用master公式来求解时间复杂度 4) 归并排序的实质 时间复杂度0(N ...

  6. 图的拓扑排序,AOV,完整实现,C++描述

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  7. 【algo&ds】9.拓扑排序、AOV&AOE、关键路径问题

    对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性 ...

  8. Java数据结构和算法之数组与简单排序

    一.数组于简单排序 数组 数组(array)是相同类型变量的集合,可以使用共同的名字引用它.数组可被定义为任何类型,可以是一维或多维.数组中的一个特别要素是通过下标来访问它.数组提供了一种将有联系的信 ...

  9. Hark的数据结构与算法练习之鸽巢排序

    算法说明 鸽巢排序是分布排序的一种,我理解其实鸽巢就是计数排序的简化版,不同之处就是鸽巢是不稳定的,计数排序是稳定的. 逻辑很简单,就是先找出待排数组的最大值maxNum,然后实例一个maxNum+1 ...

随机推荐

  1. EXCEL复制可见单元格

    Excel筛选后,复制筛选后的单元格 1, 首先还是复制这一部分内容. 2, CTRL+G打开 "定位"窗口. 3, 在 "定位"窗口中选择"定位条件 ...

  2. Kubernetes Pod 生命周期

    一. Pod Hook Kubernetes 为我们提供了生命周期钩子,就是我们所说的Pod Hook,Pod Hook是由kubelet发起的,当容器中的进程启动前或者容器中的进程终止之前运行.这是 ...

  3. 第2课第7节_Java面向对象编程_内部类_P【学习笔记】

    摘要:韦东山android视频学习笔记  1.什么是内部类:在类的内部定义一个类,内部类可以访问类的私有属性 class Outer{ ; class Inner{ public void print ...

  4. 对异步处理的http接口进行性能测试

    以前对接口做性能测试,接口都是同步处理的,请求之后等待响应结果就知道处理结果了,这样只要看这个接口是否异常,如果无异常无报错记录这个接口的响应时间.TPS等性能指标进行分析就可以了,最近在工作中遇到了 ...

  5. Xamarin图表开发基础教程(3)OxyPlot框架

    Xamarin图表开发基础教程(3)OxyPlot框架 Xamarin.Android中使用OxyPlot框架 在Xamarin.Android平台上实现图表显示需要完成以下的步骤: 1.添加OxyP ...

  6. vue---使用Class

    在用vue-cli开发项目的时候,很多时候会用到类.具体的使用方法: config.js(使用类,还可以定义构造函数) class config { /** * 构造函数 * @param {stri ...

  7. (转)tomcat 安全配置文档

    原文:https://www.cnblogs.com/heaven-xi/p/9961354.html 1.配置文档中使用$CATALINA_HOME变量声明为tomcat的安装目录并明确写出了tom ...

  8. Hadoop,Spark,Flink 相关KB

    Hive: https://stackoverflow.com/questions/17038414/difference-between-hive-internal-tables-and-exter ...

  9. IfcWallStandardCase 构件吊装模拟

    wall_node = (osg::Node*)(index_node->clone(osg::CopyOp::DEEP_COPY_ALL));vc_mobileCrane->tranMo ...

  10. rqalpha学习-1

    1 setup 安装 C:\work\python\rqalpha\setup.py install C:\work\python\rqalpha 2 mod list 列出mod C:\work\p ...