用染色法判断二分图是这样进行的,随便选择一个点,

1.把它染成黑色,然后将它相邻的点染成白色,然后入队列

2.出队列,与这个点相邻的点染成相反的颜色

根据二分图的特性,相同集合内的点颜色是相同的,即

但是如果这个图不是二分图,那么就会这样

把与1相邻的点2,3染成白色,然后入队列,然后2出队列,要把与2相邻的点2,3染成黑色,但是都染过了,所以不用染色

但是3的颜色应该与2相反(如果是二分图的话),可是没有相反,所以就不是二分图

 #include <stdio.h>
#include <queue>
#include <string.h>
using namespace std;
const int N = ;
struct Edge
{
int v,next;
}g[N*N];
int first[N*N];
int color[N*N];
int cy[N];
bool vis[N];
int e;
int n,m;
bool is_ ;
void addEdge(int a, int b)
{
g[e].v = b;
g[e].next =first[a];
first[a] = e++;
}
bool bfs(int cur)//染色法,判断是否是二分图
{//时间复杂度 邻居矩阵O(n*n) 邻接表 O(n+e)
queue<int> q;
q.push(cur);
color[cur] = ;
while(!q.empty())
{
cur = q.front();q.pop();
for(int i=first[cur]; i!=-; i=g[i].next)
{
int v = g[i].v;
if(color[v] == -)
{
color[v] = - color[cur];
q.push(v);
} if(color[v] == color[cur])
return false;
}
}
return true;
}
void dfs_color(int cur)
{
for(int i=first[cur]; i!=-; i=g[i].next)
{
int v = g[i].v;
if(color[v] == -)
{
color[v] = - color[cur];
dfs_color(v);
}
else if(color[v] == color[cur])
is_ = false; } }
bool dfs(int cur)
{
for(int i=first[cur]; i!=-; i=g[i].next)
{
int v = g[i].v;
if(!vis[v])
{
vis[v] = true;
if(cy[v]==- || dfs(cy[v]))
{
cy[v] = cur;
return true;
}
}
}
return false;
}
int Match()
{
int ans = ;
memset(cy, -, sizeof(cy));
for(int i=; i<=n; ++i)
{
memset(vis, , sizeof(vis));
ans += dfs(i);
}
return ans;
}
int main()
{
freopen("in.txt","r",stdin);
int a,b,i;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first, -, sizeof(first));
e = ;
for(i=; i<m; ++i)
{
scanf("%d%d",&a,&b);
addEdge(a,b);
addEdge(b,a);
}
is_ = true;
memset(color, -, sizeof(color));
for(i=; i<=n; ++i)
{
if(color[i] == -)
{
color[i] = ;
dfs_color(i);
}
}
if(!is_)
puts("No");
else
{
printf("%d\n",Match()/);//没有把集合x,y分开,所以相当有2个最大匹配
}
}
}

染色法判断是否是二分图 hdu2444的更多相关文章

  1. Wrestling Match---hdu5971(2016CCPC大连 染色法判断是否是二分图)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5971 题意:有n个人,编号为1-n, 已知X个人是good,Y个人是bad,m场比赛,每场比赛都有一个 ...

  2. Catch---hdu3478(染色法判断是否含有奇环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3478 题意:有n个路口,m条街,一小偷某一时刻从路口 s 开始逃跑,下一时刻都跑沿着街跑到另一路口,问 ...

  3. hdu 2444(染色法判断二分图+最大匹配)

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  4. 【交叉染色法判断二分图】Claw Decomposition UVA - 11396

    题目链接:https://cn.vjudge.net/contest/209473#problem/C 先谈一下二分图相关: 一个图是二分图的充分必要条件: 该图对应无向图的所有回路必定是偶环(构成该 ...

  5. poj 2942 求点双联通+二分图判断奇偶环+交叉染色法判断二分图

    http://blog.csdn.net/lyy289065406/article/details/6756821 http://www.cnblogs.com/wuyiqi/archive/2011 ...

  6. 【01染色法判断二分匹配+匈牙利算法求最大匹配】HDU The Accomodation of Students

    http://acm.hdu.edu.cn/showproblem.php?pid=2444 [DFS染色] #include<iostream> #include<cstdio&g ...

  7. HDU2444(判断是否为二分图,求最大匹配)

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  8. matlab练习程序(射线法判断点与多边形关系)

    依然是计算几何. 射线法判断点与多边形关系原理如下: 从待判断点引出一条射线,射线与多边形相交,如果交点为偶数,则点不在多边形内,如果交点为奇数,则点在多边形内. 原理虽是这样,有些细节还是要注意一下 ...

  9. hdu 2444 The Accomodation of Students 判断是否构成二分图 + 最大匹配

    此题就是求最大匹配.不过需要判断是否构成二分图.判断的方法是人选一点标记为红色(0),与它相邻的点标记为黑色(1),产生矛盾就无法构成二分图.声明一个vis[],初始化为-1.通过深搜,相邻的点不满足 ...

随机推荐

  1. PowerShell 在线教程 4

    PowerShell 在线教程 4   认识Powershell 介绍和安装 自定义控制台 快速编辑模式和标准模式 快捷键 管道和重定向 Powershell交互式 数学运算 执行外部命令 命令集 别 ...

  2. Android本地视频播放器开发--视频解码

    在上一章Android本地视频播放器开发--SDL编译编译中编译出sdl的支持库,当时我们使用的2.0,但是有些api被更改了,所以在以下的使用者中我们使用SDL1.3的库,这个库我会传上源码以及编译 ...

  3. Matlab图像处理系列1———线性变换和直方图均衡

    注:本系列来自于图像处理课程实验,用Matlab实现最主要的图像处理算法 图像点处理是图像处理系列的基础,主要用于让我们熟悉Matlab图像处理的编程环境.灰度线性变换和灰度拉伸是对像素灰度值的变换操 ...

  4. 正則表達式验证邮箱,qq,座机,手机,网址

    手机: var reg=/^1[34578]\d{9}$/; if(reg.test("你输入的手机号码") ) { alert("手机号码输入正确") } e ...

  5. python基础教程_学习笔记1:序列-1

    序列 数据结构:通过某种方式组织在一起的数据元素的集合,这些数据元素能够是数字或者字符,甚至能够是其它数据结构. python中,最主要的数据结构是序列. 序列中的每一个元素被分配一个序号--即元素的 ...

  6. Microsoft JET Database Engine 错误 '80004005'不是一个有效的路径。 确定路径名称拼写是否正确,以及是否连接到文件存放的服务器。

  7. Python之常用模块(待更新)

    模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...

  8. Common Lisp第三方库介绍 | (R "think-of-lisper" 'Albertlee)

    Common Lisp第三方库介绍 | (R "think-of-lisper" 'Albertlee) Common Lisp第三方库介绍 一个丰富且高质量的开发库集合,对于实际 ...

  9. ubuntu14.04中virtualbox虚拟机无法启动

    近期升级了ubuntu14.04,还是按之前的方法安装了virtualbox(guest系统仍然使用升级之前的镜像文件),可是在启动guest系统时,总是报错,提演示样例如以下: Kernel dri ...

  10. 《转》MFC网络编程学习

    原地址:http://www.cnblogs.com/renyuan/archive/2013/06/04/3117006.html要学习好网路编程,主要看以下几个方面: 1.掌握概念,诸如:同步(S ...