一。 原型

sigmoid 函数原型:

在 [-5, 5] 上的曲线是这个样子的:

二。X轴变形

如果我们希望加速更快一点,那么就需要对原型中的指数 -X 的系数进行改变。原型可以认为是 -(1 * X),如果我们需要把图形Y不变,X压缩为原来的 1 /5,那么只需要指数改为 -(5 * X),这样图形就更加陡峭。此处指数部分变形为 -aX。原始图形是 [-5, 5] 这个区间,一共是10个数字,压缩后的整个区间为 [- t / 2, t / 2],那么 a = 10 / t。

我们注意到,原型中X轴的坐标是 从负数到正数,那么我们需要的图形X坐标是从 0 开始的,所以需要对压缩后的图形进行平移,平移的 X 行程为 t / 2。所以指数变形为 - (10 / t) * (X - t / 2), 展开为 -( 5 * 2 / t ) * X + 5 的 -ax + b 的形式,其中 a = 5 * 2 / t, b = 5。因为原始图形对应的区间是 [-5, 5],如果我们设 F = 5,那么在区间 [- F, F ] 上的 s 曲线进行 x 方向的压缩平移后 指数部分变为 -( F * 2 / t ) * X + F .

整体的公式为 y = 1 / ( 1 + e ^ ( - ( F * 2 / t ) * X + F ) )

y = \frac{1}{1 + e ^ {- (F * \frac{2}{t}) * x + F}}

三。Y轴变形

原始图形的 Y 轴区间是 [0, 1],实际使用中我们需要在 Y 轴进行拉伸,所以需要增加系数 Ymax - 0,我们有时候还需要图形Y轴不从0开始,需要一个最小的 Y 轴偏移 Ymin,所以 Y轴拉伸的系数变为 Ymax - Ymin。

整体公式变为 y = (ymax - ymin)( 1 / ( 1 + e ^ ( - ( F * 2 / t ) * X + F ) ) ) + ymin

y = (y_{max} - y_{min}) * \frac{1}{1 + e ^ {- (F * \frac{2}{t}) * x + F}} + y_{min}

注: 使用 在线公式 https://latex.vimsky.com/

s曲线的更多相关文章

  1. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  2. ROC曲线、PR曲线

    在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...

  3. canvas贝塞尔曲线

    贝塞尔曲线 Bézier curve(贝塞尔曲线)是应用于二维图形应用程序的数学曲线. 曲线定义:起始点.终止点.控制点.通过调整控制点,贝塞尔曲线的形状会发生变化. 1962年,法国数学家Pierr ...

  4. UIBezierPath-完善曲线

    override func draw(_ rect: CGRect) { let path = UIBezierPath() // 起点 path.move(to: CGPoint(x: , y: ) ...

  5. 贝塞尔曲线(UIBezierPath)属性、方法汇总

    UIBezierPath主要用来绘制矢量图形,它是基于Core Graphics对CGPathRef数据类型和path绘图属性的一个封装,所以是需要图形上下文的(CGContextRef),所以一般U ...

  6. 基于jquery实现图片拖动和曲线拖放

    功能:图片的拖动.曲线的拖放和绘制 一. 准备工作 1. 点击此下载相关的文档 二. 在浏览器中运行 dragDrop.html 文件,即可看到效果 三. 效果图

  7. 深度掌握SVG路径path的贝塞尔曲线指令

    一.数字.公式.函数.变量,哦,NO! 又又一次说起贝塞尔曲线(英语:Bézier curve,维基百科详尽中文释义戳这里),我最近在尝试实现复杂的矢量图形动画,发现对贝塞尔曲线的理解馒头那么厚,是完 ...

  8. 贝塞尔曲线(cubic bezier)

    对于css3的Transitions,网上很多介绍,相信大家都比较了解,这里用最简单的方式介绍下: transition语法:transition:<transition-property> ...

  9. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  10. iOS开发之画图板(贝塞尔曲线)

    贝塞尔曲线,听着挺牛气一词,不过下面我们在做画图板的时候就用到贝塞尔绘直线,没用到绘制曲线的功能.如果会点PS的小伙伴会对贝塞尔曲线有更直观的理解.这篇博文的重点不在于如何用使用贝塞尔曲线,而是利用贝 ...

随机推荐

  1. 洛谷 P5242 [USACO19FEB]Cow Dating P

    这道题很有意思. 不难发现,对于一个区间 \([l, r]\),恰好只有一个奶牛接受邀请的概率为 \[\prod_{i=l}^r(1-p_i) \cdot \sum_{i=l}^r \frac {p_ ...

  2. Java单例模式:为什么我强烈推荐你用枚举来实现单例模式

    单例模式简介 单例模式是 Java 中最简单,也是最基础,最常用的设计模式之一.在运行期间,保证某个类只创建一个实例,保证一个类仅有一个实例,并提供一个访问它的全局访问点.下面就来讲讲Java中的N种 ...

  3. js原型链。。fuck

    function Person(name){ this.name = name; }; function Mother(){ }; //给mother提供公有的属性 Mother.prototype ...

  4. vue 项目上传到码云,push时error: failed to push some refs to 'https://gitee.com/mawenrou/vue_ht.git'

    vue 项目上传到码云,push时error: failed to push some refs to 'https://gitee.com/mawenrou/vue_ht.git' 因为之前已经创建 ...

  5. Linux centosVMware vim 编辑模式、vim命令模式、vim实践

    一.编辑模式.命令模式 在一般模式下输入:或/可进入命令模式.在该模式下可进行走索某个字符或字符串,也可保存.替换.退出.显示行号等. /word:在光标之后查找一个字符串word,按n向后继续搜索 ...

  6. MyBatis Dao层的编写

    传统的dao层编写 以前编写dao层,先新建一个包com.chy.dao,再写接口StudentDao: public interface StudentDao { public void inser ...

  7. IOS 常用View属性设置

    设置按钮属性 1.设置按钮背景颜色 backgroundColor @property (weak, nonatomic) IBOutlet UIButton *deleteButton; self. ...

  8. python内置函数二

    issubclass(a,b)   判断a类是否属于b的子类    返回为布尔值 locals()   显示局部变量 max()   取最大值 min()   取最小值 zip()    拉链方法  ...

  9. Linux学习计划(一)

    一.用途:网络服务器 二.优点: 1.开源免费 2.良好的可移植性 3.安全性 三.安装Linux 工具:VMware workstation .centOS7 安装步骤 图片加载中... 说明: Ⅰ ...

  10. JavaScript 文件延迟和异步加载

    JavaScript 文件延迟和异步加载 -般情况下,在文档的 <head> 标签中包含 JavaScript 脚本,或者导入的 JavaScript 文件. 这意味着必须等到全部 Jav ...