[POJ2553]The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11182   Accepted: 4608

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

 
题目大意:输出有哪些点在有向图中满足它能到达的点都可以到它
试题分析:缩点后输出出度为0的强联通分量中的点即可。
 
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=5101;
const int INF=999999;
int N,M;
vector<int> vec[MAXN];
bool inq[MAXN];
int que[MAXN];
int dfn[MAXN],low[MAXN];
int tar[MAXN];
bool oud[MAXN];
int tot,Col,tmp; void Tarjan(int x){
tot++;
dfn[x]=low[x]=tot;
que[++tmp]=x;
inq[x]=true;
for(int i=0;i<vec[x].size();i++){
int to=vec[x][i];
if(!dfn[to]){
Tarjan(to);
low[x]=min(low[x],low[to]);
}
else if(inq[to]) low[x]=min(low[x],dfn[to]);
}
if(dfn[x]==low[x]){
++Col; tar[x]=Col;
inq[x]=false;
while(x!=que[tmp]){
int k=que[tmp];
tar[k]=Col;
inq[k]=false;
tmp--;
}
tmp--;
}
return ;
}
vector<int> vec2[MAXN];
int ans[MAXN];
int ans2[MAXN];
int atmp,atmp2;
int main(){
while(1){
N=read(); if(!N) break;
M=read();
memset(inq,false,sizeof(inq));
memset(oud,false,sizeof(oud));
atmp=atmp2=0;
memset(dfn,0,sizeof(dfn));
tmp=0,Col=0,tot=0;
memset(tar,0,sizeof(tar));
for(int i=1;i<=N;i++) vec[i].clear(),vec2[i].clear();
for(int i=1;i<=M;i++){
int u=read(),v=read();
vec[u].push_back(v);
}
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=1;i<=N;i++){
//size[tar[i]]++;
vec2[tar[i]].push_back(i);
for(int j=0;j<vec[i].size();j++){
if(tar[i]!=tar[vec[i][j]])
oud[tar[i]]=true;
}
}
for(int i=1;i<=Col;i++){
if(!oud[i]) ans[++atmp]=i;
}
for(int i=1;i<=atmp;i++){
for(int j=0;j<vec2[ans[i]].size();j++){
ans2[++atmp2]=vec2[ans[i]][j];
}
}
sort(ans2+1,ans2+atmp2+1);
for(int i=1;i<atmp2;i++) printf("%d ",ans2[i]);
printf("%d\n",ans2[atmp2]);
}
}

【图论】The Bottom of a Graph的更多相关文章

  1. The Bottom of a Graph(tarjan + 缩点)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9139   Accepted:  ...

  2. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  3. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  4. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  5. The Bottom of a Graph

                                    poj——The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  6. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  7. poj--2553--The Bottom of a Graph (scc+缩点)

    The Bottom of a Graph Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Oth ...

  8. POJ——T2553 The Bottom of a Graph

    http://poj.org/problem?id=2553 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10987   ...

  9. POJ-2552-The Bottom of a Graph 强连通分量

    链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...

随机推荐

  1. C++正则表达式例子

    给了策划配置公式的地方,需要将策划配置的公式文本转化为可执行的脚本代码:比如:self->mHp*2+target->2mMp*GetHit()+ self_mon->4mDan/1 ...

  2. Spark-2.3.2【SparkStreaming+SparkSQL-实时仪表盘应用】

    应用场景:实时仪表盘(即大屏),每个集团下有多个mall,每个mall下包含多家shop,需实时计算集团下各mall及其shop的实时销售分析(区域.业态.店铺TOP.总销售额等指标)并提供可视化展现 ...

  3. 某p2p存在通用上传漏洞

    google链接查找: inurl:shouyi.asp inurl:itemlist_xq.asp?id= 很多存在Fckeditor上传链接: FCKeditor/editor/filemanag ...

  4. python—RE正则表达式

    re正则表达式 正则表达式(或 RE)是一种小型的.高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现.正则表达式模式被编译成一系列的字节码,然后由用 C 编写的 ...

  5. 微信支付:curl 出错,错误码: 60

    在测试微信支付 - 模式二 - 扫码支付时,遇到如下错误: curl出错,错误码:60 这是因为在 WxPay.Api.php 文件中做了严格的 ssl 证书校验: curl_setopt($ch,C ...

  6. 64_m1

    MAKEDEV-3.24-18.fc26.x86_64.rpm 13-Feb-2017 22:33 101030 MUMPS-5.0.2-8.fc26.i686.rpm 14-Feb-2017 13: ...

  7. 利用h5,chart.js监测手机三轴加速度,用以研究计步算法等

    用window.DeviceMotionEvent来判断手机浏览器是否支持访问硬件资源,window.addEventListener('devicemotion',deviceMotionHandl ...

  8. Fel表达式计算引擎学习

    转载原文地址:Fel是轻量级的高效的表达式计算引擎 Fel的问题 Fel的问题 Fel是轻量级的高效的表达式计算引擎 Fel在源自于企业项目,设计目标是为了满足不断变化的功能需求和性能需求. Fel是 ...

  9. git 查看远程分支 $ git branch -a

    查看远程分支 加上-a参数可以查看远程分支,远程分支会用红色表示出来(如果你开了颜色支持的话): 1 2 3 4 5 6 7 8 9 10 $ git branch -a master remote ...

  10. hdu 2686&&hdu 3376(拆点+构图+最小费用最大流)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...