Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。

Sample Output

【样例输出1】
2
1
2
【样例输出2】
2
1
0

HINT

 

Source

Solution:第一问快速幂
      第二问EXGCD
      第三问BSGS
BSGS(Baby Step Giant Step)网上介绍的很详细了,但是我令x=im-j这样就不用求逆元辣,相应的为了不出现负数是i从1开始到m枚举,则j从1到m枚举,因为可以等于m,j就不需要从0开始啦.。
另:一开始在CV上测,用了puts试试,忘了自带换行在CV上过了,然而在BZOJ PE了233
 #include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
#define ll long long
using namespace std;
ll y,z,p; ll fast_pow(ll y,ll z,ll p)
{
ll ans=;
while (z)
{
if (z&) ans=ans*y%p;
y=y*y%p;
z>>=;
}
return ans;
} ll gcd(ll a,ll b)
{return b==?a:gcd(b,a%b);} void ex_gcd(ll a,ll b,ll &x,ll &y)
{
if (!b) {x=;y=;return;}
ex_gcd(b,a%b,x,y);
ll t=x; x=y; y=t-a/b*y;
} void solve1()
{
printf("%lld\n",fast_pow(y,z,p));
} void solve2()
{
ll d=gcd(y,p);
if (z%d) {printf("Orz, I cannot find x!\n");return;}
y/=d; z/=d;
ll a,b;
ex_gcd(y,p,a,b);
a=a*z%p;
while (a<) a+=p;
printf("%lld\n",a);
} void solve3()
{
y%=p,z%=p;
if (!y && !z) {puts(""); return;}
if (!y) {printf("Orz, I cannot find x!\n");return;}
map<ll,ll> mp;
mp.clear();
ll m=ceil(sqrt(p));
ll t=fast_pow(y,m,p),k=z%p;//直接m即可
for (int i=;i<m;i++)
{
if (!mp[k]) if (i) mp[k]=i;//注意变量,及时订正。
else mp[k]=-;
k=k*y%p;
}
k=;
for (int i=;i<m;i++)
{
if (mp[k])//注意!mp与mp的判断
{
if (mp[k]==-) mp[k]=;
printf("%lld\n",i*m-mp[k]);
return;
}
k=k*t%p;
}
printf("Orz, I cannot find x!\n");//各种傻
} int main()
{
int T,t;
scanf("%d%d",&T,&t);
while (T--)
{
scanf("%lld%lld%lld",&y,&z,&p);
if (t==) solve1();
if (t==) solve2();
if (t==) solve3();
}
}

【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS的更多相关文章

  1. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  2. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  3. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  4. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  5. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  7. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  8. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  9. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

随机推荐

  1. Delphi中uses在interfeace和implementation中的区别

    use单元引入分为在interface中引入,如 interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Co ...

  2. 【转载】 Python 调整屏幕分辨率

    转载来自: http://www.cnblogs.com/fatterbetter/p/4115423.html 需要用windows的api,ChangeDisplaySettings 实现代码如下 ...

  3. 【译】Visual Studio 15 预览版更新说明

    序:恰逢Build2016大会召开,微软发布了VS2015的update2更新包和VS2016预览版.本人正在提升英文水平中,于是在这里对VS2016预览版的官方文档进行了部分翻译.因为VS有些功能使 ...

  4. HDU4288 Coder(线段树)

    注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...

  5. PHP+Nginx环境搭配

    一.Nginx安装 nginx可以使用各平台的默认包来安装,本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好,这里默认你已经装好. u ...

  6. cmder

    添加cmder到右键菜单 Cmder.exe /REGISTER ALL 打开配置快捷键 win+alt+p 文字重叠 main->font->去掉monospace的勾 λ符号修改 找到 ...

  7. Ubuntu14.04LTS系统QQ的安装:pidgin-lwqq

    本人是轻度聊天工具使用者(大言不惭是轻度,偷笑),发现输入法到博主也有解决linux下QQ的解决方法,一并抄过来,有需要,请联系原作者 参考链接:http://www.cnblogs.com/zhj5 ...

  8. The Basics of 3D Printing in 2015 - from someone with 16 WHOLE HOURS' experience

    全文转载自 Scott Hanselman的博文. I bought a 3D printer on Friday, specifically a Printrbot Simple Metal fro ...

  9. 关于html中的设置body宽高的理解

    有时候看到别人的代码中经常出现在body中设置的宽高,不是很理解,于是自己测试了下,瞬间懂了,废话不多说,直接上代码: 首先创建好一个基本的html文件,设body的背景色为red: 相信大家都知道效 ...

  10. Windows下MySQL zip版的简单安装

    1.下载MySQL-5.5.10-win32.zip的版本.2.解压到任意路径,比如"D:\Programm Files\".3.进入MySQL路径,复制my-small.ini为 ...