BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】
题意:求中
互质的数的个数,其中
。
分析:因为,所以
,我们很容易知道如下结论
对于两个正整数和
,如果
是
的倍数,那么
中与
互素的数的个数为
本结论是很好证明的,因为中与
互素的个数为
,又知道
,所以
结论成立。那么对于本题,答案就是
事实上只要把素数的逆元用exgcd求一求就好,其余并未用到
逆元递推法:
#include<stdio.h>
#include<string.h>
const int N=1e7+;
typedef long long ll;
int pr[N],p[N],cnt,mod;
int inv[N],ans1[N],ans2[N];
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
void init(){
ans1[]=ans2[]=inv[]=;
for(int i=;i<N;i++){
ans1[i]=(ll)ans1[i-]*i%mod;
if(!p[i])
pr[++cnt]=i;
for(int j=;j<=cnt&&i*pr[j]<N;j++){
p[pr[j]*i]=;
if(i%pr[j]==) break;
}
}
for(int i=;i<N&&i<mod;i++){
inv[i]=(mod-(ll)mod/i)*inv[mod%i]%mod;
}
for(int i=;i<N;i++){
ans2[i]=ans2[i-];
if(!p[i])
ans2[i]=(ll)ans2[i]*(i-)%mod*inv[i%mod]%mod;
}
}
int main(){
int t,n,m;
scanf("%d%d",&t,&mod);
init();
while(t--){
n=read();m=read();
printf("%d\n",(ll)ans1[n]*ans2[m]%mod);
}
return ;
}
扩展欧几里德求逆元
#include<stdio.h>
#include<string.h>
const int N=1e7+;
typedef long long ll;
int pr[N],p[N],cnt,mod;
int inv[N],ans1[N],ans2[N];
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x;
}
int ex_gcd(int a,int b,int &x,int &y){
if(!b){
x=,y=;
return a;
}
int ans=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return ans;
}
int getinv(int i){
int x,y;
ex_gcd(i,mod,x,y);
x=((x%mod)+mod)%mod;
return x;
}
void init(){
ans1[]=ans2[]=inv[]=;
for(int i=;i<N;i++){
ans1[i]=(ll)ans1[i-]*i%mod;
if(!p[i])
pr[++cnt]=i,inv[i]=getinv(i);
for(int j=;j<=cnt&&i*pr[j]<N;j++){
p[pr[j]*i]=;
if(i%pr[j]==) break;
}
}
for(int i=;i<N;i++){
ans2[i]=ans2[i-];
if(!p[i])
ans2[i]=(ll)ans2[i]*(i-)%mod*inv[i%mod]%mod;
}
}
int main(){
int t,n,m;
scanf("%d%d",&t,&mod);
init();
while(t--){
n=read();m=read();
printf("%d\n",(ll)ans1[n]*ans2[m]%mod);
}
return ;
}
http://blog.csdn.net/acdreamers/article/details/8220787
BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】
题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...
- [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...
- bzoj 2186: [Sdoi2008]沙拉公主的困惑
#include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...
- BZOJ 2186 SDOI2008 沙拉公主的困惑 数论
题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
随机推荐
- Java中处理异常中return关键字
Java中,执行try-catch-finally语句需要注意: 第一:return语句并不是函数的最终出口,如果有finally语句,这在return之后还会执行finally(return的值会暂 ...
- Python语言规范及风格规范
语言规范: http://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/python_language_ ...
- java分派
变量被声明时的类型叫做变量的静态类型(Static Type) 又叫明显类型(Apparent Type).变量所引用的对象的真实类型又叫做变量的实际类型(Actual Type). 根据对象的类型而 ...
- jQuery eislideshow 图片轮播
在线实例 基础演示 自动播放 使用方法 <div id="ei-slider" class="ei-slider"> <ul class=&q ...
- Android 五大布局
Android 五大布局: FrameLayout(框架布局),LinearLayout (线性布局),AbsoluteLayout(绝对布局),RelativeLayout(相对布局),Table ...
- 学写了一段LINQ
要写一段代码读入一个用空格分隔的几列的文件,程序中有多处类似的文件,所以想着有没有什么好点的办法. 井名 X坐标 Y坐标 深度 测试井1 634600 ...
- 通过重写OnScrollListener来监听RecyclerView是否滑动到底部
为了增加复用性和灵活性,我们还是定义一个接口来做监听滚动到底部的回调,这样你就可以把它用在listview,scrollView中去. OnBottomListener package kale.co ...
- UITabBarItem的selectedImage
TabBar使用频率很高的一个组件,TabBar的TabBarItem有两个属性一个是image(未选中图片),另一个是selectedImage(选中时图片) 但是运行时发现,选中时的图片变成了蓝色 ...
- 限制UITextField输入内容的长度
一.前言 今天做手机号输入限制长度,例如我的textfield只能输入11位,如果再多输入的话就不再textfield中显示,只显示11位的手机号. 如果用ReactiveCocoa的话,这个很好解决 ...
- SqlSever大数据分页
在sql sever中大数据的分页一直是难以处理的一块,利用id自增列分页也存在不足之处.从一个相对全面的分页看,sql sever2005中新增的row_number()函数解决了这个问题.还是从一 ...