我觉得xor这东西特别神奇,最神奇的就是这个性质了 A xor B xor B=A

这样就根本不用在意重复之类的问题了

关于xor的问题大家可以去膜拜莫队的《高斯消元解XOR方程组》,里面写的很详细

我来扯两道bzoj上的例题好了

bzoj2115,求1-N最长xor路径,根据那个神奇的性质,我们先随便找一条1-n的路径作为标准路径

任意一条1-N的路径都等价于标准路径和某些环的xor

怎么找环?很简单,bfs下去,设d[x]表示1到x的一条路径xor值,如果到一条边x-->y时y已经访问过了,那么d[x] xor d[y] xor w[x,y]就是一个环

然后这个问题就转变成了求一堆数中任意数xor最大的问题,这我们是通过求线性基然后按位贪心就可以了

 type node=record
po,next:longint;
num:int64;
end; var f:array[..] of int64;
d:array[..] of int64;
q,p:array[..] of int64;
a:array[..] of int64;
e:array[..] of node;
x,y,i,n,m,len,t:longint;
ans,z:int64; procedure add(x,y:longint;z:int64);
begin
inc(len);
e[len].po:=y;
e[len].num:=z;
e[len].next:=p[x];
p[x]:=len;
end; procedure bfs;
var h,r,i,x,y:longint;
begin
fillchar(d,sizeof(d),);
d[]:=;
h:=; r:=; q[]:=;
while h<=r do
begin
x:=q[h];
i:=p[x];
while i<> do
begin
y:=e[i].po;
if d[y]=- then
begin
d[y]:=d[x] xor e[i].num;
inc(r);
q[r]:=y;
end
else if d[y] xor d[x] xor e[i].num<> then //找环
begin
inc(t);
a[t]:=d[y] xor d[x] xor e[i].num;
end;
i:=e[i].next;
end;
inc(h);
end;
end; procedure gauss;
var i,j:longint;
begin
for i:= to t do
for j:= downto do
if a[i] and (int64() shl j)> then //求线性基
begin
if f[j]= then
begin
f[j]:=a[i];
break;
end
else a[i]:=a[i] xor f[j];
end; ans:=d[n];
for i:= downto do
if ans and (int64() shl i)= then ans:=ans xor f[i];
end; begin
readln(n,m);
for i:= to m do
begin
readln(x,y,z);
add(x,y,z);
add(y,x,z);
end;
bfs;
gauss;
writeln(ans);
end.

bzoj2844

一堆数xor能产生数的种类数就是2^线性基的秩

并且每个数出现的次数是一样的(求证明)

然后我们就可以做了,注意这里的线性基要用高斯消元求而不能用上题的方法

因为要计算某个数出现在第几位,必须使线性基相互xor的数的大小满足二进制位的大小关系

举个例子,比如线性基a,b,c并且a>b>c,如果取a,b xor,选取状况为110,这样选取xor的数一定要比011这样选大,我们称之为满足二进制大小关系(我自己口胡的名词)

 const mo=;

 var a,d:array[..] of longint;
f,b:array[..] of longint;
k,p,i,j,n,ans,m,t:longint; procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; begin
readln(n);
for i:= to n do
read(a[i]);
d[]:=;
for i:= to n do
d[i]:=d[i-]* mod mo; readln(m);
k:=n;
for i:= to n do
begin
for j:=i+ to n do
if a[i]<a[j] then swap(a[i],a[j]);
if a[i]= then
begin
k:=i-;
break;
end;
for j:= downto do
if a[i] and ( shl j)> then
begin
b[i]:=j;
for p:= to n do
if (p<>i) and (a[p] and ( shl j)>) then
a[p]:=a[p] xor a[i];
break;
end;
end;
ans:=;
for i:= to k do
if m and ( shl b[i])> then
begin
m:=m xor a[i];
ans:=(ans+d[k-i+n-k]) mod mo;
end; writeln(ans);
end.

关于高斯消元解决xor问题的总结的更多相关文章

  1. 【高斯消元解xor方程】BZOJ1923-[Sdoi2010]外星千足虫

    [题目大意] 有n个数或为奇数或为偶数,现在进行m次操作,每次取出部分求和,告诉你这几次操作选取的数和它们和的奇偶性.如果通过这m次操作能得到所有数的奇偶性,则输出进行到第n次时即可求出答案:否则输出 ...

  2. 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树

    [题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...

  3. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)

    http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...

  4. Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...

  5. HDU 4418 高斯消元解决概率期望

    题目大意: 一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望 因为每个位置都跟后m个位置的数学期望有关 E[i] = sigma((E[ ...

  6. 高斯消元与xor方程组

    ;i<=n;i++) { ;j<=n;j++) if(a[j]>a[i]) swap(a[i],a[j]); if(!a[i]) break; ;j>=;j--) ) { ;k ...

  7. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  8. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  9. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

随机推荐

  1. gson小练习之嵌套复杂数据解析

    package com.zf.demo; import java.util.List; import com.google.gson.Gson; public class JGson { /** * ...

  2. Django开发网站(四)

    模型: 配置数据库 首先保证数据库已经安装,默认在Ubuntu下已经安装了sqlite3数据库,然后在项目名下的配置文件settings.py修改如下代码: 安装sqlite3 DATABASES = ...

  3. 【转】C#路径/文件/目录/I/O常见操作汇总

    文件操作是程序中非常基础和重要的内容,而路径.文件.目录以及I/O都是在进行文件操作时的常见主题,这里想把这些常见的问题作个总结,对于每个问题,尽量提供一些解决方案,即使没有你想要的答案,也希望能提供 ...

  4. C# 将Datatable作为参数,传入存储过程

    //创建一个静态方法 public static DataSet fnInsertSingleUser(DataTable v_dt, params string[] param) { try { S ...

  5. Oracle中正则表达式的使用

    Oracle10开始支持正则表达式. ORACLE中的支持正则表达式的函数主要有下面四个: 1. REGEXP_LIKE :          与LIKE的功能相似 2. REGEXP_INSTR : ...

  6. Linux下Mysql数据库备份

    今天一同事的电脑无缘无故坏了,找了IT部门检测说是硬盘坏了,数据无法恢复.好悲剧.自己博客也写了好久不容易,要是突然间数据丢了那怎么办!于是写了个数据库自动备份脚本,并创建任务计划,实现每天22:30 ...

  7. CentOS服务器 6.6 安装MySQL5.5.46

    原文:http://www.linuxidc.com/Linux/2012-06/62288.htm 稍微修改了几个空格的错误 一.安装cmake# 安装所需依赖包(这段指令是一直输入的)yum -y ...

  8. 1016: [JSOI2008]最小生成树计数 - BZOJ

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  9. Java NIO(New I/O)的三个属性position、limit、capacity

    Java NIO(New I/O)的三个属性position.limit.capacity 在缓冲区中,最重要的属性有下面三个,它们一起合作完成对缓冲区内部状态的变化跟踪: capacity posi ...

  10. mysql.zip免安装版配置

    MYSQL ZIP免安装版配置 1. 下载MySQL 选择自己想要的.本次安装.我使用的是mysql-5.6.17-winx64  地址:http://dev.mysql.com/downloads/ ...