考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理。

然后gg了35分。

题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了

p是素数,所以可以搞 

然后我们用矩阵快速幂求出幂,然后快速幂即可解决问题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
#define Ma 50000
#define LL long long
LL prime[Ma],num_prime;
LL isnotprime[Ma]={1,1};
LL c,ou;
LL m,p,n,q;
struct matrix{
    LL a[10][10];
    matrix(){
        memset(a,0,sizeof(a));
    }
};
matrix mul(matrix aa,matrix b){
    matrix c;
    pos(i,0,1){
        pos(j,0,1){
            c.a[i][j]=0;
            pos(k,0,1){
                c.a[i][j]=(c.a[i][j]+aa.a[i][k]*b.a[k][j])%ou;
            }
        }
    }
    return c;
}
void getprime(){
    pos(i,2,Ma-1){
        if(!isnotprime[i]){
            prime[num_prime++]=i;
        }
        for(int j=0;j<num_prime&&i*prime[j]<Ma;j++){
            isnotprime[i*prime[j]]=1;
            if(!(i%prime[j])){
                c++;
                break;
            }
        }
    }
}
matrix init(){
    matrix res;
    pos(i,0,1){
        pos(j,0,1)
            res.a[i][j]=(i==j);
    }
    return res;
}
matrix ks(matrix aa,int k){
    matrix res=init();
    while(k){
        if(k&1)
          res=mul(res,aa);
        k>>=1;
        aa=mul(aa,aa);
    }
    return res;
}
LL oula(LL nn){
    LL mm=(int)sqrt(nn+0.5);
    LL an=nn;
    for(int i=0;prime[i]<=mm;i++){
        if(nn%prime[i]==0){
            an=an/prime[i]*(prime[i]-1);
            while(nn%prime[i]==0)
               nn/=prime[i];
        }
    }
    if(nn>1)
      an=an/nn*(nn-1);
      return an;
}
LL qpow(LL a,LL k,LL c){
    LL an=1;
    a=a%c;
    while(k){
        if(k&1){
            an=(an*a)%c;
        }
        k>>=1;
        a=(a*a)%c;
    }
    return an;
}
LL ans;
int main(){
    getprime();
    scanf("%lld%lld",&m,&p);
    while(m--){
        ans=0;
        scanf("%lld%lld",&n,&q);
        ou=oula(q);
        matrix A;
        A.a[0][0]=1;
        A.a[0][1]=1;
        A.a[1][0]=1;
        A.a[1][1]=0;
        matrix res=ks(A,n-1);
        LL tmp=res.a[0][0];
        //cout<<"ou="<<ou<<"  tmp="<<tmp<<endl;
        ans=qpow(p,tmp,q)%q;
        printf("%lld\n",ans);
    }
    return 0;
}

  

[bzoj 1409] Password 矩阵快速幂+欧拉函数的更多相关文章

  1. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  2. HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂

    装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...

  3. hdu 5895(矩阵快速幂+欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5895 f(n)=f(n-2)+2*f(n-1) f(n)*f(n-1)=f(n-2)*f(n-1)+2 ...

  4. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  5. Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)

    传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...

  6. hdu4549 矩阵快速幂 + 欧拉降幂

    R - M斐波那契数列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit  ...

  7. Super A^B mod C (快速幂+欧拉函数+欧拉定理)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1759 题目:Problem Description Given A,B,C, You should quick ...

  8. hdu 2814 快速求欧拉函数

    /** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...

  9. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

随机推荐

  1. JavaScript学习笔记(一)——初识js

    这个周,开始了JavaScript的学习路程.虽然从高中开始就接触了网页设计的知识,大学里的学习也算回顾了Html和Css的知识,实习期间在牛盾科技也是做的网站建设,不过通过前段时间找工作才发现自己了 ...

  2. View学习(三)- View的布局(layout)过程

    前段开始学习View的工作原理,前两篇博客的草稿都已经写好了,本想一鼓作气写完所有的相关文章,然后经历了一段连续加班,结果今天准备继续写文章时,把之前写好的东西都忘记了,又重新梳理了一遍,所以说那怕就 ...

  3. 【Python3之多线程】

    一.threading模块 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性. 1.开启线程的两种方式(同Process) 方法一 from thr ...

  4. 单例设计模式 Single

    一些人总结出来用来解决特定问题的固定的解决方案. 解决一个类在内存中只存在一个对象,想要保证对象的唯一. 1 为了避免其他程序过多的建立该类对象.禁止其他程序建立该类对象. 2 为了其他程序可以访问该 ...

  5. mysql常见的优化方法

    1.选取适当的字段属性.例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任 ...

  6. POJ 2195 Going Home (带权二分图匹配)

    POJ 2195 Going Home (带权二分图匹配) Description On a grid map there are n little men and n houses. In each ...

  7. 深入 HTML5 Web Worker 应用实践:多线程编程

    深入 HTML5 Web Worker 应用实践:多线程编程 HTML5 中工作线程(Web Worker)简介 至 2008 年 W3C 制定出第一个 HTML5 草案开始,HTML5 承载了越来越 ...

  8. Win Linux 双系统安装指南

    双系统安装指南 环境说明 硬件:一块240G NVMe,一块240G SSD,一块2T的HDD. 系统:Linux Mint 18.2,Windows 10 Enterprise Version 17 ...

  9. socket 异步通信的一些问题

    socket通信在使用时被封装很简单,像操作文件一样简单,正是因为简单里面好多细节需要深入研究一下. windows下通信有select和iocp方式,select是传统方式,在socket里使用re ...

  10. 用jQuery动态添加小广告

    网站的时候,有些网站总是在右下角,左上角或者其他地方投放广告. 我用jQuery试着自己做了一个,代码如下,如有不对的地方请各位不吝赐教 <!DOCTYPE html> <html ...