训练模型

上一篇文章中,我们已经通过LearningPipeline训练好了一个“鸢尾花瓣预测”模型,

var model = pipeline.Train<IrisData, IrisPrediction>();

现在就可以让模型对一条没有人工标注结果的数据进行分析,返回一个预测结果。

var prediction = model.Predict(new IrisData()
            {
                SepalLength = 3.3f,
                SepalWidth = 1.6f,
                PetalLength = 0.2f,
                PetalWidth = 5.1f,
            });

Console.WriteLine($"Predicted flower type is: {prediction.PredictedLabels}");

或者一次预测一批数据

var inputs = new[]{
                new IrisData()
                {
                    SepalLength = 3.3f,
                    SepalWidth = 1.6f,
                    PetalLength = 0.2f,
                    PetalWidth = 5.1f,
                }
                ,new IrisData()
                {
                    SepalLength = 5.2f,
                    SepalWidth = 3.5f,
                    PetalLength = 1.5f,
                    PetalWidth = 0.2f,
                }
            };

var predictions = model.Predict(inputs);

保存模型

但是大多数时候,已经训练好的模型以后还需要继续可以使用,因此需要把它持久化,写入到zip文件中。

await model.WriteAsync("IrisPredictionModel.zip");

使用模型

一旦建立了机器学习模型,就可以部署它,利用它进行预测。我们可以通过REST API,接受来自客户端的数据输入,并返回预测结果。

  • 创建API项目

dotnet new webapi -o myApi
  • 安装依赖项

cd myApi
dotnet add package Microsoft.ML
dotnet restore
  • 引用模型

要在API中引用我们前面保存的模型,只需将IrisPredictionModel.zip复制到API项目目录中即可。

  • 创建数据结构

我们的模型使用数据结构IrisData和IrisPrediction来定义特征和预测属性。因此,当使用我们的模型通过API进行预测时,它也需要引用这些数据结构。因此,我们需要在API项目中定义IrisData和IrisPrediction。类的内容与上一篇文章中创建模型项目中的内容相同。

using Microsoft.ML.Runtime.Api;
namespace myApi
{
    public class IrisData
    {
        [Column(")]
        public float SepalLength;

        [Column(")]
        public float SepalWidth;

        [Column(")]
        public float PetalLength;

        [Column(")]
        public float PetalWidth;

        [Column(")]
        [ColumnName("Label")]
        public string Label;
    }
}
using Microsoft.ML.Runtime.Api;
namespace myApi
{
    public class IrisPrediction
    {
        [ColumnName("PredictedLabel")]
        public string PredictedLabels;
    }
}
  • 创建Controller

现在,在API项目的Controllers目录中,创建PredictController类,用于处理来自客户端的预测请求,它包含一个POST方法

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.ML;

namespace myApi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class PredictController : ControllerBase
    {
        // POST api/predict
        [HttpPost]
        public async Task<string> Post([FromBody] IrisData value)
        {
            var model = await PredictionModel.ReadAsync<IrisData,IrisPrediction>("IrisPredictionModel.zip");
            var prediction = model.Predict(value);
            return prediction.PredictedLabels;
        }
    }
}
  • 测试API

使用如下命令行运行程序:

dotnet run

然后,使用POSTMAN或其他工具向http://localhost:5000/api/predict发送POST请求,请求数据类似:

{
    "SepalLength": 3.3,
    "SepalWidth": 1.6,
    "PetalLength": 0.2,
    "PetalWidth": 5.1,
}

如果成功,将会返回"Iris-virginica"。

学习ML.NET(2): 使用模型进行预测的更多相关文章

  1. 迁移学习——使用Tensorflow和VGG16预训模型进行预测

    使用Tensorflow和VGG16预训模型进行预测 from:https://zhuanlan.zhihu.com/p/28997549   fast.ai的入门教程中使用了kaggle: dogs ...

  2. ANN:ML方法与概率图模型

    一.ML方法分类:          产生式模型和判别式模型 假定输入x,类别标签y         -  产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs   ...

  3. keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottlenec ...

  4. R语言利用ROCR评测模型的预测能力

    R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的 ...

  5. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  6. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. 深度学习|基于LSTM网络的黄金期货价格预测--转载

    深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上 ...

  8. 深度学习原理与框架-递归神经网络-时间序列预测(代码) 1.csv.reader(进行csv文件的读取) 2.X.tolist(将数据转换为列表类型)

    1. csv.reader(csvfile) # 进行csv文件的读取操作 参数说明:csvfile表示已经有with oepn 打开的文件 2. X.tolist() 将数据转换为列表类型 参数说明 ...

  9. ArcGIS案例学习笔记-批量裁剪地理模型

    ArcGIS案例学习笔记-批量裁剪地理模型 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 功能:空间数据的批量裁剪 优点:1.批量裁剪:任意多个目标数据,去裁剪任意 ...

随机推荐

  1. spring ApplicationContext中Bean的生命周期

    AbstractApplicationContext Spring的AbstractApplicationContext是ApplicationContext的抽象实现类,该抽象类的refresh方法 ...

  2. mysql中的utf8mb4、utf8mb4_unicode_ci、utf8mb4_general_ci

    1.utf8与utf8mb4(utf8 most bytes 4) MySQL 5.5.3之后增加了utfmb4字符编码 支持BMP(Basic Multilingual Plane,基本多文种平面) ...

  3. [20180403]访问dba_autotask_task无输出问题.txt

    [20180403]访问dba_autotask_task无输出问题.txt --//链接http://www.itpub.net/thread-1911421-1-1.html的讨论,还没注意原先的 ...

  4. SOAP REST

    SOAP是基于RPC原理,是传统程序的函数调用和返回在RPC中被请求和应答代替了而已. SOAP Simple Object Access Protocol,是一种严格定义的信息交换协议,用于在web ...

  5. windows server服务器上mysql远程连接失败的坑

    windows server服务器上mysql远程连接失败的坑 背景:趁这阿里云活动,和朋友合伙买了个服务器,最坑的是没想到他买的是windows Server的,反正便宜,将就着用吧,自己装好了wa ...

  6. Eclipse中定位当前文件在项目中的位置

    点击红色框内的按钮,就能定位当前文件在项目中的位置, 另外, 找到位置后记得再点击一下这个按钮, 要不然每次打开一个文件都会自动定位

  7. css实现不定高度的元素垂直居中问题

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  8. Django Form ModelForm modelfromset

    forms 组件 Form 组件 form表单完成的事情 提供input可以提交数据 对提交的数据进行校验 提供错误提示 定义form组件 from django import forms class ...

  9. MyBatis Generator使用示例

    一.MBG介绍 MyBatis Generator(MBG)是一个Mybatis的代码生成器,它可以用来生成可以访问(多个)表的基础对象.MBG解决了对数据库操作有最大影响的一些简单的CRUD(插入, ...

  10. Python3中PyMongo的用法

    MongoDB存储 在这里我们来看一下Python3下MongoDB的存储操作,在本节开始之前请确保你已经安装好了MongoDB并启动了其服务,另外安装好了Python的PyMongo库. 连接Mon ...