Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

/*
求n个数组成小根堆的方案数。
设f[i]为以i为根的小根堆方案数。
f[i]=C(sz[i]-1,sz[i*2])*f[i*2]*f[i*2+1]。
最神奇的是被lucas坑了一把,当n>mod时预处理就成0啦!!!
*/
#include<iostream>
#include<cstdio>
#define N 1000010
#define lon long long
using namespace std;
int n,mod,hal[N],sz[N];
lon inv[N],jc1[N],jc2[N];
void init(){
inv[]=inv[]=;for(int i=;i<=n;i++) inv[i]=((mod-mod/i)*inv[mod%i])%mod;
jc1[]=;for(int i=;i<=n;i++) jc1[i]=(jc1[i-]*i)%mod;
jc2[]=;for(int i=;i<=n;i++) jc2[i]=(jc2[i-]*inv[i])%mod;
}
lon C(int n,int m){
if(n<m) return ;
if(n>mod||m>mod) return (C(n%mod,m%mod)*C(n/mod,m/mod))%mod;
else return ((jc1[n]*jc2[m])%mod*jc2[n-m])%mod;
}
void dfs1(int x){
sz[x]=;
if(x*<=n) dfs1(x*),sz[x]+=sz[x*];
if(x*+<=n) dfs1(x*+),sz[x]+=sz[x*+];
}
lon dfs2(int x){
if(x*>n) return ;
lon tot=C(sz[x]-,sz[x*]);
if(x*<=n) tot=(tot*dfs2(x*))%mod;
if(x*+<=n) tot=(tot*dfs2(x*+))%mod;
return tot;
}
int main(){
scanf("%d%d",&n,&mod);
init();
dfs1();
printf("%d",dfs2());
return ;
}

Perm 排列计数(bzoj 2111)的更多相关文章

  1. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  6. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  7. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  8. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  9. bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. ajax400错误

    在用ajax向后台传递参数时,页面一直显示错误400 bad request. 出现这个问题的原因是,要传递的VO类里一个实体bean里面的两个字段名称与前台表单序列化之后的name名称不匹配. 解决 ...

  2. HDwiki 源代码 - 互动百科开源

    昨日3.15,在曝光的企业中出现了一家让我好奇的企业(互动百科),一直不敢想百科能独立出来做成一家公司.出于对网站的好奇,今日进入该网站,惊讶的是此公司已经上市(股票代码:835799),在网站的底部 ...

  3. php五种常见的设计模式

    工厂模式 工厂模式是最常用的实例化对象的模式,是用工厂方法代替new操作的一种模式 使用工厂模式的好处是:如果想要更改实例化的类名,则只需要更改该工厂方法内容即可,不需逐一寻找代码中具体实例化的地方( ...

  4. JAVA解析XML有哪几种方法?并简述各自的优缺点

    DOM: 是用与平台和语言无关的方式表示XML文档的官方W3C标准,分析该结构通常需要加载整个文档和构造层次结构,然后才能做任何工作.是基于信息层次的 优点有:由于树在内存中是持久的,因此可以修改它以 ...

  5. 笔记-HTTP代理

    笔记-HTTP代理 1.      基本原理 所谓代理,一个重要的目的是身份伪装,让被访问端无法正辨识访问者的身份. 那么下一个问题是服务器从哪些信息上来识别访问端的身份. 以php http服务器为 ...

  6. appcompat_v7\res\values-v21\themes_base.xml:158: error: Error: No resource

    C:\DevelopSoft\workspace\appcompat_v7\res\values-v21\themes_base.xml:158: error: Error: No resource ...

  7. [转]Git for windows 下vim解决中文乱码的有关问题

    Git for windows 下vim解决中文乱码的问题 原文链接:Git for windows 下vim解决中文乱码的有关问题 1.右键打开Git bash: 2.cd ~ 3.vim .vim ...

  8. java多线程的常用方法

    介绍一些多线程中的常用方法: //启动方法 a.start(); //返回代码正在被哪个线程调用的信息 a.currentThread(); //返回线程的名字 a.currentThread().g ...

  9. Python 命令总结

    本章内容 pip pip install -r requirement.py(里面写入需要安装的包的名字) pip install django==1.9            #需要安装那个版本 P ...

  10. laravel5.2总结--软删除

    当模型被软删除时,它们并不会真的从数据库中被移除.而是会在模型上设置一个 deleted_at 属性并将其添加到数据库.如果对应模型被软删除,则deleted_at字段的值为删除时间,否则该值为空. ...