Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

/*
求n个数组成小根堆的方案数。
设f[i]为以i为根的小根堆方案数。
f[i]=C(sz[i]-1,sz[i*2])*f[i*2]*f[i*2+1]。
最神奇的是被lucas坑了一把,当n>mod时预处理就成0啦!!!
*/
#include<iostream>
#include<cstdio>
#define N 1000010
#define lon long long
using namespace std;
int n,mod,hal[N],sz[N];
lon inv[N],jc1[N],jc2[N];
void init(){
inv[]=inv[]=;for(int i=;i<=n;i++) inv[i]=((mod-mod/i)*inv[mod%i])%mod;
jc1[]=;for(int i=;i<=n;i++) jc1[i]=(jc1[i-]*i)%mod;
jc2[]=;for(int i=;i<=n;i++) jc2[i]=(jc2[i-]*inv[i])%mod;
}
lon C(int n,int m){
if(n<m) return ;
if(n>mod||m>mod) return (C(n%mod,m%mod)*C(n/mod,m/mod))%mod;
else return ((jc1[n]*jc2[m])%mod*jc2[n-m])%mod;
}
void dfs1(int x){
sz[x]=;
if(x*<=n) dfs1(x*),sz[x]+=sz[x*];
if(x*+<=n) dfs1(x*+),sz[x]+=sz[x*+];
}
lon dfs2(int x){
if(x*>n) return ;
lon tot=C(sz[x]-,sz[x*]);
if(x*<=n) tot=(tot*dfs2(x*))%mod;
if(x*+<=n) tot=(tot*dfs2(x*+))%mod;
return tot;
}
int main(){
scanf("%d%d",&n,&mod);
init();
dfs1();
printf("%d",dfs2());
return ;
}

Perm 排列计数(bzoj 2111)的更多相关文章

  1. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  2. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  3. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  4. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  5. Perm排列计数(新博客试水,写的不好,各路大神见谅)

    B. Perm 排列计数 内存限制:512 MiB 时间限制:1000 ms 标准输入输出   题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i&l ...

  6. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  7. bzoj 2111 [ZJOI2010]Perm 排列计数(DP+lucas定理)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2111 [题意] 给定n,问1..n的排列中有多少个可以构成小根堆. [思路] 设f[i ...

  8. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  9. bzoj 2111: [ZJOI2010]Perm 排列计数 Lucas

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. JDBC中 mysql数据库的连接工具类 Java登录 及增删改查 整理 附带:Navicat Premium 11.0.12中文破解版.zip(下载)mysql数据库工具

    先写一个工具类,有实现MySQL数据库连接的方法,和关闭数据库连接.关闭ResultSet  结果集.关闭PreparedStatement 的方法.代码如下: package com.swift; ...

  2. node第一天

    一.主要执行的文件命名一般为main.js var aModule =require('./a.js');//相对路径 var aModule =require('a.js');//专门从node_m ...

  3. 1911: [Apio2010]特别行动队

    Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5706  Solved: 2876[Submit][Status][Discuss] Descriptio ...

  4. Scrapy分布式爬虫打造搜索引擎- (二)伯乐在线爬取所有文章

    二.伯乐在线爬取所有文章 1. 初始化文件目录 基础环境 python 3.6.5 JetBrains PyCharm 2018.1 mysql+navicat 为了便于日后的部署:我们开发使用了虚拟 ...

  5. 【CodeBase】通过层级键在多维数组中获取目标值

    通过层级键在多维数组中获取目标值 /* *Author : @YunGaZeon *Date : 2017.08.09 *param data : Data Array *param keys : K ...

  6. Jack Straws POJ - 1127 (简单几何计算 + 并查集)

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...

  7. python资源大全2

    原文链接 网络 Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包.可用作交互式包处理程序或单独作为一个库. pypcap, Pcapy, pylibpcap: 几个不同 libpcap ...

  8. Session只读的影响

    .net中使用Session必须实现IRequiresSessionState接口,不过还有个只读的接口IReadOnlySessionState, 若是实现只读的接口,那么在该页面(如一般处理程序) ...

  9. Diycode开源项目 NotificationActivity

    1.NotificationActivity预览以及布局详解 1.1.首先看一下通知的具体页面. 1.2.然后是布局代码==>activity_fragment.xml <LinearLa ...

  10. linux系统下单节点hadoop2的配置

    Jdk安装: jdk-7u45-linux-x64.gz cp jdk-7u45-linux-x64.gz /usr/java/ cd /usr/java/ tar -zxvf jdk-7u45-li ...