给定两正整数 $a, b$ 。给定序列 $s_0, s_1, \dots, s_n,s_i$ 等于 $1$ 或 $-1$,并且已知 $s$ 是周期为 $k$ 的序列并且 $k\mid (n+1)$,输入只给出序列 $s$ 的前 $k$ 项。

Find out the non-negative remainder of division of $\sum\limits_{i=0}^n s_i a^{n-i}b^i$ by $10^9+9$.

数据范围

$ 1\le n, a, b \le 10^9$
$ 1\le k \le 10^5$

分析

注意到 $10^9 + 9$ 是一个素数,令 $p = 10^9 + 9$ 。
问题可化为等比数列求和。公比为 $q = \left(\dfrac{b}{a}\right)^k$ 。要特别注意 $q = 1 \pmod{p}$ 时等比数列的求和公式不再适用。

比赛时,我第一发提交没有注意到这个点。后来想到这个点,但只想到了 $a = b \pmod{p}$ 的情况。其实这并不是使 $q = 1$ 的唯一情况,至少还有一种情况「$a = - b \pmod {p}$ 且 $k$ 为偶数」也使得 $q = 1$ 。比赛时我没想到这种情况,到快结束时,把用公式求和换成折半求和才通过的。


$1-(\frac{b}{a})^k $ 在模 $p$ 逆元不存在 $\iff$ $1-(\frac{b}{a})^k = 0 \pmod{p}$ $\iff$ $(\frac{b}{a})^k = 1 \pmod{p}$


这一段论证真是太蠢了,被自己给蠢哭了
下面仔细分析一下这个问题
令 $S = \sum\limits_{i=0}^{k-1} s_i a^{n-i}b^i$ 。考虑 $q \ne 1\pmod{p}$ 的情形。
求和公式为
\[
\frac{S(1-(\frac{b}{a})^{n+1})} {1-(\frac{b}{a})^k}
\]

分母 $1-(\frac{b}{a})^k$ 在模 $p$ 下的逆元一定存在吗?

答案是肯定的。假设分母在模 $p$ 下的逆元不存在,即 $p\mid (a^k - b^k)(a^k)^{-1}\iff p\mid (a^k - b^k)$


总结

当意识等比数列求和公式有不适用的情况时,应当进一步问自己,「等比数列求和公式不适用的充要条件是什么?」然后就自然会想到「直接去判断 $\left(\dfrac{b}{a}\right)^k \bmod p$ 是否等于 $1$」 。

CF 964C Alternating Sum的更多相关文章

  1. Codeforces 964C Alternating Sum

    Alternating Sum 题意很简单 就是对一个数列求和. 题解:如果不考虑符号 每一项都是前一项的 (b/a)倍, 然后考虑到符号的话, 符号k次一循环, 那么 下一个同一符号的位置 就是 这 ...

  2. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  3. CF963A Alternating Sum

    思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...

  4. Codeforces 963 A. Alternating Sum(快速幂,逆元)

    Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...

  5. [codeforces round#475 div2 ][C Alternating Sum ]

    http://codeforces.com/contest/964/problem/C 题目大意:给出一个等比序列求和并且mod 1e9+9. 题目分析:等比数列的前n项和公式通过等公比错位相减法可以 ...

  6. Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)

    题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...

  7. zoj 3813 Alternating Sum(2014ACMICPC Regional 牡丹江站网络赛 E)

    1.http://blog.csdn.net/dyx404514/article/details/39122743 思路:题目意思很清楚了,这里只说思路. 设区间[L,R],区间长度为len=(R-L ...

  8. [zoj3813]Alternating Sum 公式化简,线段树

    题意:给一个长度不超过100000的原串S(只包含数字0-9),令T为将S重复若干次首尾连接后得到的新串,有两种操作:(1)修改原串S某个位置的值(2)给定L,R,询问T中L<=i<=j& ...

  9. CF 577B Modulo Sum

    题意:给一个长度为n的正整数序列,问能不能找到一个不连续的子序列的和可以被m整除. 解法:抽屉原理+dp.首先当m<n时一定是有答案的,因为根据抽屉原理,当得到这个序列的n个前缀和%m时,一定会 ...

随机推荐

  1. 标准输入输出 stdio 流缓冲 buffering in standard streams

    From : http://www.pixelbeat.org/programming/stdio_buffering/ 译者:李秋豪 我发现找出标准流用的是什么缓冲是一件困难的事. 例如下面这个使用 ...

  2. 由一道CTF pwn题深入理解libc2.26中的tcache机制

    本文首发安全客:https://www.anquanke.com/post/id/104760 在刚结束的HITB-XCTF有一道pwn题gundam使用了2.26版本的libc.因为2.26版本中加 ...

  3. 学习笔记 | java反序列化漏洞分析

    java反序列化漏洞是与java相关的漏洞中最常见的一种,也是网络安全工作者关注的重点.在cve中搜索关键字serialized共有174条记录,其中83条与java有关:搜索deserialized ...

  4. C#设计模式原则

    原则的诞生:面向对象:封装.继承.多态三大支柱蕴含了用抽象来封装变化,降低耦合,实现复用的精髓: 封装:隐藏内部的实现,保护内部信息: 继承:实现复用,归纳共性: 多态:改写对象行为,实现更高级别的继 ...

  5. 【C++学习笔记】强大的算法——spfa

    spfa的定义 PFA算法的全称是:Shortest Path Faster Algorithm,用于求单源最短路,由西南交通大学段凡丁于1994年发表.当给定的图存在负边时,Dijkstra算法就无 ...

  6. 初识Java程序,编写简单代码?

    Dear All: 初识Java程序,编写简单代码? 首先小编在这里说下我们今天编写Java程序使用的是 eclipse 开发工具! 1.下载eclipse 官网地址:http://www.eclip ...

  7. k8s的ingress资源简述

    ingress controller是独立与controller-manager的Ingress的主要作用是可以利用nginx,haproxy,envoy,traefik等负载均衡器来暴露集群内部服务 ...

  8. DevOps - 配置管理 - Puppet

    uppet总结 一.基础知识 1. Puppet是开源的基于Ruby的系统配置管理工具,依赖于C/S的部署架构.Puppet这样的自动化配置管理工具可以帮助系统管理员更加方便的完成多台服务器的升级软件 ...

  9. ATM-conf-settings

    import os BASE_DIR = os.path.dirname(os.path.dirname(__file__))BASE_DB = os.path.join(BASE_DIR, 'db' ...

  10. JS — 实现简单的数字时钟

    js实现简单的数字时钟 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...