UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html
题解
本题的构造方法很多。这里只介绍一种。
首先,总边数为 $\frac{n(n-1)}2$,每一棵树需要 $n-1$ 条边,所以答案最多是 $\lfloor \frac n 2 \rfloor$ 。
然后我们来找到构造出 $\lfloor \frac n 2 \rfloor$ 。
这里我们只考虑 n 为偶数,因为如果 n 为奇数的话就只要在 n-1 的基础上随便连就好了。
考虑增量法。
假设当前加入的点为 n-1 和 n ,那么,首先我们在原来的 $\frac {n-2} 2 $ 个树中连上点 n-1 和 n,方法是对于第 $i$ 棵树,$2i-1$ 连 $n-1$, $2i$ 连 $n$;
接下来我们考虑搞一个新树。首先 $n-1$ 连 $n$ ,然后对于 $1$~$n-2$,偶数连 $n-1$,奇数连 $n$ 。
构造完毕。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0;
char ch=getchar();
while (!isdigit(ch))
ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
const int N=2005;
int n;
vector <pair <int,int> > e[N];
int main(){
n=read();
for (int i=2;i<=n;i+=2){
int j=i-1;
e[i/2].push_back(make_pair(i,j));
for (int a=2;a<i;a+=2){
int b=a-1;
e[a/2].push_back(make_pair(a,i));
e[a/2].push_back(make_pair(b,j));
e[i/2].push_back(make_pair(a,j));
e[i/2].push_back(make_pair(b,i));
}
}
if (n&1)
for (int i=1;i<=n/2;i++)
e[i].push_back(make_pair(i*2,n));
printf("%d\n",n/2);
for (int i=1;i<=n/2;i++,puts(""))
for (auto p : e[i])
printf("%d %d ",p.first,p.second);
return 0;
}
UOJ#460. 新年的拯救计划 构造的更多相关文章
- UOJ #460 新年的拯救计划
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...
- UOJ #460. 新年的拯救计划 神仙题+构造
对于这个神仙题,我还能说什么~ 第一个答案=$n/2$ 还是比较好猜的. 对于构造这个树,大概就是先从 $1$ 号节点向 $n/2$ 距离以内都连一条边,再在第 $n/2$ 个节点进行这个操作,然后从 ...
- 【UOJ#308】【UNR#2】UOJ拯救计划
[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2 ...
- [UOJ#351]新年的叶子
[UOJ#351]新年的叶子 试题描述 躲过了AlphaGo 之后,你躲在 SingleDog 的长毛里,和它们一起来到了AlphaGo 的家.此时你们才突然发现,AlphaGo 的家居然是一个隐藏在 ...
- uoj308 【UNR #2】UOJ拯救计划
传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...
- 【UNR #2】UOJ拯救计划
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...
- [UOJ UNR#2 UOJ拯救计划]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...
- A. 【UNR #2】UOJ拯救计划
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的 ...
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
随机推荐
- 查看Android系统已安装应用的列表
可以通过adb shell pm list package 我们可以通过系统提供的工具pm来隐藏一些应用,比如:pm hide和pm disable pm disable <PACKAGE_OR ...
- [THUWC2017]随机二分图
题目大意 给一张二分图,有左部点和右部点. 有三种边,第一种是直接从左部点连向右部点,出现概率为50%. 第二种边一组里有两条边,这两条边同时出现或者不出现,概率都是50%. 第三种边一组里有两条边, ...
- django restframework 跨域访问
场景介绍: 在Django开发过程中,使用前后端分离设计的站点越来越多,如Django+VUE.Django+Angular.在使用DjangoRestFramework开发API的过程中,由于前端站 ...
- PHP 加解密方法大全
最近看见一篇文章讲的是PHP的加解密方法,正好也自己学习下,顺便以后有用到的地方也好能快速用上,仅供自己学习和复习,好了不多BB,上代码. 基于这几个函数可逆转的加密为:base64_encode() ...
- Spring mvc 整合PageHelper
Integer page=queryBean.getPage(); Integer pageSize=queryBean.getPageSize(); response.setContentType( ...
- maven wrapper使用本地maven
修改maven-wrapper.properties内容如下: #distributionUrl=https://repo1.maven.org/maven2/org/apache/maven/apa ...
- 静态IP设置
先查看自动网络的ip地址,然后设置 cmd进入DOS输入命令:ipconfig /all 设置固定IP
- LFYZ-OJ ID: 1016 输油管道问题
分析 根据之前的证明,我们已经知道最佳输油管线的y位置就是所有油井y坐标序列的中位数,故解题过程为: 1. 读入n个y数据 2. 对n个y数据进行排序(升序或降序) 3. 求中位数zws 4. 计算输 ...
- 学习熟悉箭头函数, 类, 模板字面量, let和const声明
箭头函数:https://blog.csdn.net/qq_30100043/article/details/53396517 类:https://blog.csdn.net/pcaxb/articl ...
- Hello jna
记录下这几天用jna3.5.0调c++写的dll的经历 os:win7 用jna调dll首先需要一个dll文件并有可调的方法,然后根据方法的名称,参数,返回值编写一个interface c++需要包含 ...