General overview[edit]

 

Illustration of the idea behind Diffie–Hellman key exchange

Diffie–Hellman key exchange establishes a shared secret between two parties that can be used for secret communication for exchanging data over a public network. The following conceptual diagram illustrates the general idea of the key exchange by using colors instead of very large numbers.

The process begins by having the two parties, Alice and Bob, agree on an arbitrary starting color that does not need to be kept secret (but should be different every time[3]); in this example the color is yellow. Each of them selects a secret color that they keep to themselves. In this case, orange and blue-green. The crucial part of the process is that Alice and Bob now mix their secret color together with their mutually shared color, resulting in orange-tan and light-blue mixtures respectively, then publicly exchange the two mixed colors. Finally, each of the two mix together the color they received from the partner with their own private color. The result is a final color mixture yellow-brown that is identical to the partner's color mixture.

If a third party listened to the exchange, it would be computationally difficult for them to determine the secret colors. In fact, when using large numbers rather than colors, this action is computationally expensive for modern supercomputers to do in a reasonable amount of time.

Cryptographic explanation[edit]

The simplest and the original implementation of the protocol uses the multiplicative group of integers modulo p, where p is prime, and g is a primitive root modulo p. These two values are chosen in this way to ensure that the resulting shared secret can take on any value from 1 to p–1. Here is an example of the protocol, with non-secret values in blue, and secret values in red.

  1. Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).
  2. Alice chooses a secret integer a = 4, then sends Bob A = ga mod p
    • A = 54 mod 23 = 4
  3. Bob chooses a secret integer b = 3, then sends Alice B = gb mod p
    • B = 53 mod 23 = 10
  4. Alice computes s = Ba mod p
    • s = 104 mod 23 = 18
  5. Bob computes s = Ab mod p
    • s = 43 mod 23 = 18
  6. Alice and Bob now share a secret (the number 18).

Both Alice and Bob have arrived at the same value s, because, under mod p,

{\displaystyle {\color {Blue}A}^{\color {Red}b}{\bmod {\color {Blue}p}}={\color {Blue}g}^{\color {Red}ab}{\bmod {\color {Blue}p}}={\color {Blue}g}^{\color {Red}ba}{\bmod {\color {Blue}p}}={\color {Blue}B}^{\color {Red}a}{\bmod {\color {Blue}p}}}[8]

More specifically,

{\displaystyle ({\color {Blue}g}^{\color {Red}a}{\bmod {\color {Blue}p}})^{\color {Red}b}{\bmod {\color {Blue}p}}=({\color {Blue}g}^{\color {Red}b}{\bmod {\color {Blue}p}})^{\color {Red}a}{\bmod {\color {Blue}p}}}

Note that only ab, and (gab mod p = gba mod p) are kept secret. All the other values – pgga mod p, and gb mod p – are sent in the clear. Once Alice and Bob compute the shared secret they can use it as an encryption key, known only to them, for sending messages across the same open communications channel.

Of course, much larger values of ab, and p would be needed to make this example secure, since there are only 23 possible results of n mod 23. However, if p is a prime of at least 600 digits, then even the fastest modern computers cannot find a given only gp and ga mod p. Such a problem is called the discrete logarithm problem.[3] The computation of ga mod p is known as modular exponentiation and can be done efficiently even for large numbers. Note that g need not be large at all, and in practice is usually a small integer (like 2, 3, ...).

Diffie–Hellman key exchange的更多相关文章

  1. 深入浅出Diffie–Hellman

    一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...

  2. 浅析Diffie–Hellman

    一.作者 这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie).马丁·赫尔曼(Martin Edward Hellman)于1976年发表. 二.说明 它是一种安全协 ...

  3. Git 常见问题: unable to negotiate with *.*.*.*: no matching key exchange methodfound...

    在Windows上更新了git 版本后,clone/pull时出现错误, unable to negotiate with *.*.*.*: no matching key exchange meth ...

  4. Navicat 用ssh通道连接时总是报错 (报错信息:SSH:expected key exchange group packet form serve

    转:https://blog.csdn.net/qq_27463323/article/details/76830731 之前下了一个Navicat 11.0 版本 用ssh通道连接时总是报错 (报错 ...

  5. 连接远程数据库时出现 SSH: expected key exchange group packet from server / 2003 - Can't connect to MySQL server on 'XXX' (10038) / 1130 - Host 'XXX' is not allowed to connect to this MySQL server

    昨天在自己的远程服务器上玩,把系统重装了.新装了MySQL,在本地用navicat连接的时候出了几个小问题. 问题一:SSH: expected key exchange group packet f ...

  6. git clone 报错Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange method found. Their offer: diffie-hellman-group1-sha1

    在执行git clone命令报错 Unable to negotiate with xxx.xxx.xxx.xxx port 12345: no matching key exchange metho ...

  7. 关于no matching key exchange method found. Their offer: diffie-hellman-group1-sha1的解决办法

    原文链接:https://mycyberuniverse.com/error/no-matching-key-exchange-method-found-openssh7.html What caus ...

  8. 数据库连接出错 expected key exchange group packet form server

    数据库连接出错 expected key exchange group packet form server SSH: expected key exchange group packet form ...

  9. no matching key exchange method found. Their offer: diffie-hellman-group1-sha1

    1. 使用git克隆项目报错 $ git clone ssh://liuchao@192.168.7.32:29418/platform/Midou Cloning into 'Midou'... U ...

随机推荐

  1. [ldap]ldap server安装以及图形化操作

    https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-a-basic-ldap-server-on ...

  2. 第2章-Vue.js指令

    一.学习目标 了解 什么 是 Vue.js 指令 理解 Vue.js 指令的 用途 掌握 Vue.js 指令的书写规范 能够 使用 Vue.js 指令完成部门页面交互效果(难点和重点) 二.指令的基本 ...

  3. --BEA官方网站(http: //www.bea.com)甲骨文已完成对该公司的收购BEA Weblogic Server 7.0x应用服务器简明安 装、配置手册 1

    ====================简 介: BEA公司是业内著名的中间件产商,以Tuxedo及Weblogic闻名于世,而其基础件平台(infrastructure)Weblogic platf ...

  4. 2015/10/9 Python核编初级部分学习总结

    终于在十一长假之后的两天看完了<Python核心编程>的初级部分.虽然到后来两章,类和环境看得越来越慢,越来越难以理解.很多东西只能靠强记,也没办法真正掌握了,我想了想,还是不强迫自己去背 ...

  5. Data science blogs

    Data science blogs A curated list of data science blogs Agile Data Science http://blog.sense.io/ (RS ...

  6. nginx目录路径重定向[转]

    如果希望域名后边跟随的路径指向本地磁盘的其他目录,而不是默认的web目录时,需要设置nginx目录访问重定向. 应用场景:dashidan.com/image自动跳转到dashidan.com/fol ...

  7. aidl.exe'' finished with non-zero exit value 1问题解决【转载】

    PS:Android Studio用AIDL时,碰到一个非常棘手的问题,但是百度之,压根非法解决,FQ出去,终于找到了一篇解决问题的文章,特地转载之. 之前使用aidl传递的都是基本的数据类型比如in ...

  8. 游戏AI:行为树

    Behavior Tree 行为树通过子Task的返回值决定整棵树的走向 Task 行为树上的每个节点都称为一个Task, 每个Task存在三种状态, success, failure, runnin ...

  9. LintCode 391: Count Of Airplanes

    LintCode 391: Count Of Airplanes 题目描述 给出飞机的起飞和降落时间的列表,用 interval 序列表示. 请计算出天上同时最多有多少架飞机? 样例 对于每架飞机的起 ...

  10. python之yagmail库笔记

    1. yagmail是啥 yagmail是给正常人用的,封装的比较彻底的一个python邮件库,发送接收邮件只需要几行代码,炒鸡简单. 2. 安装 使用pip安装,炒鸡简单: pip install ...